On the Superstability Related with the Trigonometric Functional Equation

被引:2
|
作者
Kim, Gwang Hui [1 ]
机构
[1] Kangnam Univ, Dept Math, Yongin 446702, Gyeonggi, South Korea
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2009年
关键词
STABILITY;
D O I
10.1155/2009/503724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will investigate the superstability of the (hyperbolic) trigonometric functional equation from the following functional equations: f(x + y) +/- g(x-y) = lambda f(x)g(y), f(x + y) +/- g(x-y) = lambda g(x)f(y), f(x + y) +/- g(x-y) = lambda f(x)f(y), f(x + y) +/- g(x-y) = lambda g(x)g(y), which can be considered the mixed functional equations of the sine function and cosine function, of the hyperbolic sine function and hyperbolic cosine function, and of the exponential functions, respectively. Copyright (C) 2009 Gwang Hui Kim.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Superstability of functional equations related to spherical functions
    Szekelyhidi, Laszlo
    OPEN MATHEMATICS, 2017, 15 : 427 - 432
  • [22] On a functional equation of trigonometric type
    Jung, Soon-Mo
    Rassias, Michael Th.
    Mortici, Cristinel
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 294 - 303
  • [23] Superstability of Some Pexider-Type Functional Equation
    GwangHui Kim
    Journal of Inequalities and Applications, 2010
  • [24] SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE
    Lee, Young Whan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (03): : 357 - 369
  • [25] Superstability of Some Pexider-Type Functional Equation
    Kim, Gwang Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [26] A Trigonometric Functional Equation SOLUTION
    Cuculiere, Roger
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (05): : 469 - 471
  • [27] ON A μ-MIXED TRIGONOMETRIC FUNCTIONAL EQUATION
    Zeglami, Driss
    Fadli, Brahim
    Park, Choonkil
    Rassias, Themistocles M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (06) : 1003 - 1011
  • [28] The superstability of d'Alembert's functional equation on the Heisenberg group
    Bouikhalene, B.
    Elqorachi, E.
    Rassias, J. M.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 105 - 109
  • [29] On superstability of the Wigner equation
    Ilisevic, Dijana
    Turnsek, Aleksej
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 542 : 391 - 401
  • [30] The superstability of a variant of Wilson’s functional equation on an arbitrary group
    Zeglami D.
    Afrika Matematika, 2015, 26 (3-4) : 609 - 617