On the Superstability Related with the Trigonometric Functional Equation

被引:2
|
作者
Kim, Gwang Hui [1 ]
机构
[1] Kangnam Univ, Dept Math, Yongin 446702, Gyeonggi, South Korea
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2009年
关键词
STABILITY;
D O I
10.1155/2009/503724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will investigate the superstability of the (hyperbolic) trigonometric functional equation from the following functional equations: f(x + y) +/- g(x-y) = lambda f(x)g(y), f(x + y) +/- g(x-y) = lambda g(x)f(y), f(x + y) +/- g(x-y) = lambda f(x)f(y), f(x + y) +/- g(x-y) = lambda g(x)g(y), which can be considered the mixed functional equations of the sine function and cosine function, of the hyperbolic sine function and hyperbolic cosine function, and of the exponential functions, respectively. Copyright (C) 2009 Gwang Hui Kim.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Superstability of a Van Vleck’s type functional equation for the sine
    Lehlou F.
    Moussa M.
    Roukbi A.
    Kabbaj S.
    Afrika Matematika, 2018, 29 (5-6) : 861 - 867
  • [32] A new quadratic functional equation version and its stability and superstability
    Farhadabadi, Shahrokh
    Lee, Jung Rye
    Park, Choonkil
    Shokri, Javad
    Lee, Jung Rye
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 544 - 552
  • [33] On the stability of the pexiderized trigonometric functional equation
    Kim, Gwang Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 99 - 105
  • [34] The stability of a generalized trigonometric functional equation
    Kim, Gwang Hui
    INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
  • [35] Stability of a generalized trigonometric functional equation
    Tongsomporn, Janyarak
    Laohakosol, Vichian
    Hengkrawit, Charinthip
    Udomkavanich, Patanee
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1448 - 1457
  • [36] A note on the stability of a generalized trigonometric functional equation
    Hengkrawit, Charinthip
    Laohakosol, Vichian
    Tongsomporn, Janyarak
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 909 - +
  • [37] A functional equation motivated by some trigonometric identities
    Fechner, Wlodzimierz
    Fechner, Zywilla
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1160 - 1171
  • [38] Functional equation and Differentiability in the trigonometric Functions.
    Hoheisel, Guido
    MATHEMATISCHE ANNALEN, 1947, 120 : 10 - 11
  • [39] SUPERSTABILITY OF THE DIFFERENCE-FORM FUNCTIONAL EQUATIONS RELATED TO DISTANCE MEASURES
    Kim, Gwang Hui
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04): : 1217 - 1227
  • [40] The superstability of d'Alembert's functional equation on step 2 nilpotent groups
    Redouani A.
    Elqorachi E.
    Rassias T.M.
    Aequationes mathematicae, 2007, 74 (3) : 226 - 241