Superstability of functional equations related to spherical functions

被引:2
|
作者
Szekelyhidi, Laszlo [1 ,2 ]
机构
[1] Univ Debrecen, Inst Math, Egyet Ter 1,POB 12, H-4010 Debrecen, Hungary
[2] Univ Botswana, Dept Math, Gaborone, Botswana
来源
OPEN MATHEMATICS | 2017年 / 15卷
关键词
Spherical function; Stability;
D O I
10.1515/math-2017-0038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove stability-type theorems for functional equations related to spherical functions. Our proofs are based on superstability-type methods and on the method of invariant means.
引用
收藏
页码:427 / 432
页数:6
相关论文
共 50 条
  • [1] On superstability of exponential functional equations
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    Park, Choonkil
    Lee, Jung Rye
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [2] Superstability of p-Radical Functional Equations Related to Wilson–Kannappan–Kim Functional Equations
    Muaadh Almahalebi
    Rachid El Ghali
    Sam Kabbaj
    Choonkil Park
    Results in Mathematics, 2021, 76
  • [3] On superstability of exponential functional equations
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Choonkil Park
    Jung Rye Lee
    Journal of Inequalities and Applications, 2021
  • [4] SUPERSTABILITY OF THE DIFFERENCE-FORM FUNCTIONAL EQUATIONS RELATED TO DISTANCE MEASURES
    Kim, Gwang Hui
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04): : 1217 - 1227
  • [5] Superstability of p-Radical Functional Equations Related to Wilson-Kannappan-Kim Functional Equations
    Almahalebi, Muaadh
    El Ghali, Rachid
    Kabbaj, Sam
    Park, Choonkil
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [6] Superstability of generalized cauchy functional equations
    Lee, Young-Su
    Chung, Soon-Yeong
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [7] ON THE SUPERSTABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONS
    Han, Mi Hyun
    Kim, Gwang Hui
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 171 - 180
  • [8] Superstability of generalized cauchy functional equations
    Young-Su Lee
    Soon-Yeong Chung
    Advances in Difference Equations, 2011
  • [9] Two general theorems on superstability of functional equations
    Janusz Brzdȩk
    Adam Najdecki
    Bing Xu
    Aequationes mathematicae, 2015, 89 : 771 - 783
  • [10] Two general theorems on superstability of functional equations
    Brzdek, Janusz
    Najdecki, Adam
    Xu, Bing
    AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 771 - 783