On superstability of exponential functional equations

被引:7
|
作者
Noori, Batool [1 ]
Moghimi, M. B. [1 ]
Najati, Abbas [1 ]
Park, Choonkil [2 ]
Lee, Jung Rye [3 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Ardebil, Iran
[2] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[3] Daejin Univ, Dept Data Sci, Kyunggi 11159, South Korea
关键词
Banach algebra; Pexider exponential equation; Exponential function; Superstability;
D O I
10.1186/s13660-021-02615-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove the superstability of the following functional equations: f(P(x, y)) = g(x)h(y), f(x + y) =g(x)h(y).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On superstability of exponential functional equations
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Choonkil Park
    Jung Rye Lee
    Journal of Inequalities and Applications, 2021
  • [2] Superstability of generalized cauchy functional equations
    Lee, Young-Su
    Chung, Soon-Yeong
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [3] ON THE SUPERSTABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONS
    Han, Mi Hyun
    Kim, Gwang Hui
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 171 - 180
  • [4] Superstability of generalized cauchy functional equations
    Young-Su Lee
    Soon-Yeong Chung
    Advances in Difference Equations, 2011
  • [5] SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE
    Lee, Young Whan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (03): : 357 - 369
  • [6] Superstability of functional equations related to spherical functions
    Szekelyhidi, Laszlo
    OPEN MATHEMATICS, 2017, 15 : 427 - 432
  • [7] Two general theorems on superstability of functional equations
    Janusz Brzdȩk
    Adam Najdecki
    Bing Xu
    Aequationes mathematicae, 2015, 89 : 771 - 783
  • [8] Two general theorems on superstability of functional equations
    Brzdek, Janusz
    Najdecki, Adam
    Xu, Bing
    AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 771 - 783
  • [9] Superstability problem for a large class of functional equations
    Zeglami D.
    Charifi A.
    Kabbaj S.
    Afrika Matematika, 2016, 27 (3-4) : 469 - 484
  • [10] On the Superstability of Lobacevskii's Functional Equations with Involution
    Chung, Jaeyoung
    Lee, Bogeun
    Ha, Misuk
    JOURNAL OF FUNCTION SPACES, 2016, 2016