Superstability of p-Radical Functional Equations Related to Wilson–Kannappan–Kim Functional Equations

被引:0
|
作者
Muaadh Almahalebi
Rachid El Ghali
Sam Kabbaj
Choonkil Park
机构
[1] University of Ibn Tofail,Department of Mathematics, Faculty of Sciences
[2] Hanyang University,Research Institute for Natural Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Hyers–Ulam stability; superstability; radical functional equation; trigonometric functional equation; Primary 39B82; 39B62; 47H14; 47J20; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we introduce and solve the following p-radical functional equations related to trigonometric functional equations fxp+ypp+fxp-ypp=2f(x)f(y),fxp+ypp+fxp-ypp=2f(x)g(y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&f\left( \root p \of {x^{p}+y^{p}}\right) +f\left( \root p \of {x^{p}-y^{p}}\right) =2f(x)f(y),\\&f\left( \root p \of {x^{p}+y^{p}}\right) +f\left( \root p \of {x^{p}-y^{p}}\right) =2f(x)g(y), \end{aligned}$$\end{document}and fxp+ypp+fxp-ypp=2g(x)f(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f\left( \root p \of {x^{p}+y^{p}}\right) +f\left( \root p \of {x^{p}-y^{p}}\right) =2g(x)f(y) \end{aligned}$$\end{document}for all x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in {\mathbb {R}}$$\end{document} where f, g are functions from R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} into C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} and p is an odd positive integer. Furthermore, we investigate the superstability of those functional equations. As consequence, we extend our results to Banach algebras.
引用
收藏
相关论文
共 50 条
  • [1] Superstability of p-Radical Functional Equations Related to Wilson-Kannappan-Kim Functional Equations
    Almahalebi, Muaadh
    El Ghali, Rachid
    Kabbaj, Sam
    Park, Choonkil
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [2] Superstability of the p-radical functional equations related to Wilson equation and Kim's equation
    Kim, Gwang Hui
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 571 - 582
  • [3] ON THE SUPERSTABILITY OF THE p-RADICAL SINE TYPE FUNCTIONAL EQUATIONS
    Kim, Gwang Hui
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2021, 28 (04): : 387 - 398
  • [4] SUPERSTABILITY OF THE p-RADICAL TRIGONOMETRIC FUNCTIONAL EQUATION
    Kim, Gwang Hui
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 765 - 774
  • [5] KANNAPPAN-WILSON AND VAN VLECK-WILSON FUNCTIONAL EQUATIONS ON SEMIGROUPS
    Aserrar, Y.
    Elqorachi, E.
    ACTA MATHEMATICA HUNGARICA, 2024, 173 (01) : 193 - 213
  • [6] Superstability of functional equations related to spherical functions
    Szekelyhidi, Laszlo
    OPEN MATHEMATICS, 2017, 15 : 427 - 432
  • [7] On superstability of exponential functional equations
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    Park, Choonkil
    Lee, Jung Rye
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [8] On superstability of exponential functional equations
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Choonkil Park
    Jung Rye Lee
    Journal of Inequalities and Applications, 2021
  • [9] Superstability of generalized cauchy functional equations
    Lee, Young-Su
    Chung, Soon-Yeong
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [10] ON THE SUPERSTABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONS
    Han, Mi Hyun
    Kim, Gwang Hui
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 171 - 180