An ensemble of non-Hermitian Gaussian-random 2 x 2 matrices admitting the Wigner surmise

被引:13
|
作者
Ahmed, Z [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
关键词
D O I
10.1016/S0375-9601(03)00053-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that an ensemble of complex pseudo-Hermitian (2 x 2) matrices with three independent elements drawn from a Gaussian random population can admit the level-spacing distribution P(x) = pix/2 e(-pix2/4) (Wigner surmise) despite the breaking of time-reversal-invariance. Notably, the Wigner surmise is known to be exact for an ensemble of Gaussian-random 2 x 2 real-symmetric matrices. Thus, the connection between the symmetry possessed by a Hamiltonian and the degree of level repulsion becomes non-unique. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:140 / 142
页数:3
相关论文
共 50 条
  • [41] Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk
    G. M. Cicuta
    M. Contedini
    L. Molinari
    Journal of Statistical Physics, 2000, 98 : 685 - 699
  • [42] Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk
    Cicuta, GM
    Contedini, M
    Molinari, L
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 685 - 699
  • [43] A limit theorem at the edge of a non-Hermitian random matrix ensemble
    Rider, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3401 - 3409
  • [44] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [45] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [46] Rate of convergence for products of independent non-Hermitian random matrices
    Jalowy, Jonas
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [47] Non-Hermitian random matrices and the Calogero-Sutherland model
    Shukla, P
    PHYSICAL REVIEW LETTERS, 2001, 87 (19)
  • [48] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [49] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    Journal of Statistical Physics, 2022, 187
  • [50] Eigenvectors and controllability of non-Hermitian random matrices and directed graphs
    Luh, Kyle
    O'Rourke, Sean
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26