An ensemble of non-Hermitian Gaussian-random 2 x 2 matrices admitting the Wigner surmise

被引:13
|
作者
Ahmed, Z [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
关键词
D O I
10.1016/S0375-9601(03)00053-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that an ensemble of complex pseudo-Hermitian (2 x 2) matrices with three independent elements drawn from a Gaussian random population can admit the level-spacing distribution P(x) = pix/2 e(-pix2/4) (Wigner surmise) despite the breaking of time-reversal-invariance. Notably, the Wigner surmise is known to be exact for an ensemble of Gaussian-random 2 x 2 real-symmetric matrices. Thus, the connection between the symmetry possessed by a Hamiltonian and the degree of level repulsion becomes non-unique. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:140 / 142
页数:3
相关论文
共 50 条
  • [31] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [32] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [33] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [34] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [35] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [36] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346
  • [37] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [38] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [39] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [40] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874