Non-degeneracy and existence of new solutions for the Schrodinger equations

被引:10
|
作者
Guo, Yuxia [1 ]
Musso, Monica [2 ]
Peng, Shuangjie [3 ]
Yan, Shusen [3 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Somerset, England
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
PERTURBED ELLIPTIC-EQUATIONS; SEMICLASSICAL STATES; MULTIPEAK SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; SYMMETRY; UNIQUENESS; SPHERES;
D O I
10.1016/j.jde.2022.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following nonlinear problem -Delta u + V (|y|)u = u(p), u > 0 in R-N, u is an element of H-1(R-N), (0.1) where V (r) is a positive function, 1 < p < N+2/N-2. We show that the multi-bump solutions constructed in [27] are non-degenerate in a suitable symmetric space. We also use this non-degenerate result to construct new solutions for (0.1). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 279
页数:26
相关论文
共 50 条
  • [41] Non-degeneracy of extremal points
    Min Zhou
    Chinese Annals of Mathematics, Series B, 2015, 36 : 45 - 50
  • [42] Uniqueness and non-degeneracy of ground states for Choquard equations with fractional Laplacian
    Deng, Yinbin
    Peng, Shuangjie
    Yang, Xian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 : 299 - 352
  • [43] NON-DEGENERACY OF WIENER FUNCTIONALS ARISING FROM ROUGH DIFFERENTIAL EQUATIONS
    Cass, Thomas
    Friz, Peter
    Victoir, Nicolas
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3359 - 3371
  • [44] Non-degeneracy of the Bubble Solutions for the Fractional Prescribed Curvature Problem and Applications
    Yuxia Guo
    Yichen Hu
    Ting Liu
    Jianjun Nie
    The Journal of Geometric Analysis, 2023, 33
  • [45] Non-degeneracy of bubble solutions for higher order prescribed curvature problem
    Guo, Yuxia
    Hu, Yichen
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 15 - 40
  • [46] Non-degeneracy of the Bubble Solutions for the Fractional Prescribed Curvature Problem and Applications
    Guo, Yuxia
    Hu, Yichen
    Liu, Ting
    Nie, Jianjun
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [47] On uniqueness and non-degeneracy of anisotropic polarons
    Ricaud, Julien
    NONLINEARITY, 2016, 29 (05) : 1507 - 1536
  • [48] Pseudo Hyperbolic Equations with Degeneracy: Existence and Uniqueness of Solutions
    Varlamova, G. A.
    Kozhanov, A. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3594 - 3603
  • [49] Pseudo Hyperbolic Equations with Degeneracy: Existence and Uniqueness of Solutions
    G. A. Varlamova
    A. I. Kozhanov
    Lobachevskii Journal of Mathematics, 2023, 44 : 3594 - 3603
  • [50] A CRITERION FOR THE NON-DEGENERACY OF THE WAVE EQUATION
    HARTMAN, P
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) : 206 - 213