On uniqueness and non-degeneracy of anisotropic polarons

被引:4
|
作者
Ricaud, Julien [1 ,2 ]
机构
[1] Univ Cergy Pontoise, CNRS, Math Dept UMR 8088, F-95000 Cergy Pontoise, France
[2] Univ Paris 09, CNRS, CEREMADE UMR 7534, F-75016 Paris, France
基金
欧洲研究理事会;
关键词
Choquard-Pekar; polaron; linearized operator; non-degeneracy; CONCENTRATION-COMPACTNESS PRINCIPLE; EXISTENCE; CALCULUS; SYMMETRY; STATES;
D O I
10.1088/0951-7715/29/5/1507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the anisotropic Choquard-Pekar equation which describes a polaron in an anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we derive the symmetry properties of minimizers and prove that the kernel of the associated linearized operator is reduced, apart from three functions coming from the translation invariance, to the kernel on the subspace of functions that are even in each of the three principal directions of the medium.
引用
收藏
页码:1507 / 1536
页数:30
相关论文
共 50 条
  • [1] Uniqueness and generic non-degeneracy on strips
    Dancer, EN
    ADVANCED NONLINEAR STUDIES, 2002, 2 (02) : 133 - 145
  • [2] Uniqueness and non-degeneracy for a nuclear nonlinear Schrodinger equation
    Lewin, Mathieu
    Nodari, Simona Rota
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 673 - 698
  • [3] Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation
    Mathieu Lewin
    Simona Rota Nodari
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 673 - 698
  • [4] Local uniqueness and non-degeneracy of bubbling solution for critical Hamiltonian system
    Guo, Yuxia
    Hu, Yichen
    Peng, Shaolong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 391 : 105 - 166
  • [5] Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations
    Li, Wei
    Zhang, Meirong
    APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 314 - 319
  • [6] Uniqueness and non-degeneracy of solutions for nonlinear fractional Schrodinger equation with perturbation
    Wu, Yuanda
    Zhang, Yimin
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [7] Uniqueness and non-degeneracy of ground states for Choquard equations with fractional Laplacian
    Deng, Yinbin
    Peng, Shuangjie
    Yang, Xian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 : 299 - 352
  • [8] Non-degeneracy of the discriminant
    Garcia Barroso, Evelia R.
    Gwozdziewicz, J.
    Lenarcik, A.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) : 220 - 246
  • [9] Non-degeneracy of the discriminant
    E. R. García Barroso
    J. Gwoździewicz
    A. Lenarcik
    Acta Mathematica Hungarica, 2015, 147 : 220 - 246
  • [10] Non-degeneracy and uniqueness of the radial solutions to a coupled k-Hessian system
    Wang, Guotao
    Zhang, Qi
    APPLIED MATHEMATICS LETTERS, 2022, 133