Non-degeneracy and existence of new solutions for the Schrodinger equations

被引:10
|
作者
Guo, Yuxia [1 ]
Musso, Monica [2 ]
Peng, Shuangjie [3 ]
Yan, Shusen [3 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Somerset, England
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
PERTURBED ELLIPTIC-EQUATIONS; SEMICLASSICAL STATES; MULTIPEAK SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; SYMMETRY; UNIQUENESS; SPHERES;
D O I
10.1016/j.jde.2022.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following nonlinear problem -Delta u + V (|y|)u = u(p), u > 0 in R-N, u is an element of H-1(R-N), (0.1) where V (r) is a positive function, 1 < p < N+2/N-2. We show that the multi-bump solutions constructed in [27] are non-degenerate in a suitable symmetric space. We also use this non-degenerate result to construct new solutions for (0.1). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 279
页数:26
相关论文
共 50 条
  • [21] MULTI-PEAK SOLUTIONS FOR MAGNETIC NLS EQUATIONS WITHOUT NON-DEGENERACY CONDITIONS
    Cingolani, Silvia
    Jeanjean, Louis
    Secchi, Simone
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) : 653 - 675
  • [22] Uniqueness and non-degeneracy of positive radial solutions for quasilinear elliptic equations with exponential nonlinearity
    Adachi, Shinji
    Watanabe, Tatsuya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 108 : 275 - 290
  • [23] Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications
    Guo, Yuxia
    Musso, Monica
    Peng, Shuangjie
    Yan, Shusen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (06)
  • [24] THE NON-LINEAR SCHRODINGER EQUATION WITH NON-PERIODIC POTENTIAL: INFINITE-BUMP SOLUTIONS AND NON-DEGENERACY
    Magnus, Robert
    Moschetta, Olivier
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 587 - 626
  • [25] Non-degeneracy of the bubble solutions for the Hénon equation and applications
    Yuxia Guo
    Yichen hu
    Ting Liu
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 15 - 58
  • [26] Non-degeneracy of the bubble solutions for the Henon equation and applications
    Guo, Yuxia
    Hu, Yichen
    Liu, Ting
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 15 - 58
  • [27] Non-degeneracy of the discriminant
    Garcia Barroso, Evelia R.
    Gwozdziewicz, J.
    Lenarcik, A.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) : 220 - 246
  • [28] Non-degeneracy of the discriminant
    E. R. García Barroso
    J. Gwoździewicz
    A. Lenarcik
    Acta Mathematica Hungarica, 2015, 147 : 220 - 246
  • [29] Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data
    Bartolucci, Daniele
    Jevnikar, Aleks
    Lee, Youngae
    Yang, Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 2057 - 2090
  • [30] Existence and non-degeneracy of positive multi-bubbling solutions to critical elliptic systems of Hamiltonian type
    Guo, Qing
    Liu, Junyuan
    Peng, Shuangjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 355 : 16 - 61