Dyck Words, Lattice Paths, and Abelian Borders

被引:5
|
作者
Blanchet-Sadri, F. [1 ]
Chen, Kun [1 ]
Hawes, Kenneth [2 ]
机构
[1] Univ N Carolina, Dept Comp Sci, POB 26170, Greensboro, NC 27402 USA
[2] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
PERIODS; ALGORITHMS; THEOREM; FINE;
D O I
10.4204/EPTCS.252.9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use results on Dyck words and lattice paths to derive a formula for the exact number of binary words of a given length with a given minimal abelian border length, tightening a bound on that number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory, 2013) on the exact number of binary words of a given length with no abelian borders. Furthermore, we generalize these results to partial words.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [41] Refinements of (n, m)-Dyck paths
    Ma, Jun
    Yeh, Yeong-Nan
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (01) : 92 - 99
  • [42] Counting Dyck Paths by Area and Rank
    Blanco, Saul A.
    Petersen, T. Kyle
    ANNALS OF COMBINATORICS, 2014, 18 (02) : 171 - 197
  • [43] Patterns in Shi Tableaux and Dyck Paths
    Myrto Kallipoliti
    Robin Sulzgruber
    Eleni Tzanaki
    Order, 2022, 39 : 263 - 289
  • [44] Counting Prefixes of Skew Dyck Paths
    Baril, Jean-Luc
    Ramirez, Jose L.
    Simbaqueba, Lina M.
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (08)
  • [45] Area and inertial moment of Dyck paths
    The, MN
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (4-5): : 697 - 716
  • [46] Raised k-Dyck Paths
    Drube, Paul
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (06)
  • [47] Patterns in Shi Tableaux and Dyck Paths
    Kallipoliti, Myrto
    Sulzgruber, Robin
    Tzanaki, Eleni
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (02): : 263 - 289
  • [48] On Enumeration of Dyck Paths with Colored Hills
    Janjic, Milan
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (09)
  • [49] A bijection on Dyck paths and its consequences
    Deutsch, E
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 253 - 256
  • [50] Representation of numerical semigroups by Dyck paths
    Bras-Amoros, Maria
    de Mier, Anna
    SEMIGROUP FORUM, 2007, 75 (03) : 677 - 682