Dyck Words, Lattice Paths, and Abelian Borders

被引:5
|
作者
Blanchet-Sadri, F. [1 ]
Chen, Kun [1 ]
Hawes, Kenneth [2 ]
机构
[1] Univ N Carolina, Dept Comp Sci, POB 26170, Greensboro, NC 27402 USA
[2] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
PERIODS; ALGORITHMS; THEOREM; FINE;
D O I
10.4204/EPTCS.252.9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use results on Dyck words and lattice paths to derive a formula for the exact number of binary words of a given length with a given minimal abelian border length, tightening a bound on that number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory, 2013) on the exact number of binary words of a given length with no abelian borders. Furthermore, we generalize these results to partial words.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [31] Peak Heights in Dyck Paths
    Delorme, C.
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (03): : 272 - 273
  • [32] Progressive and Rushed Dyck Paths
    Bacher, Axel
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (403):
  • [33] Some permutations on Dyck words
    Barnabei, Marilena
    Bonetti, Flavio
    Castronuovo, Niccolo
    Cori, Robert
    THEORETICAL COMPUTER SCIENCE, 2016, 635 : 51 - 63
  • [34] On doubly symmetric Dyck words
    Cori, Robert
    Frosini, Andrea
    Palma, Giulia
    Pergola, Elisa
    Rinaldi, Simone
    THEORETICAL COMPUTER SCIENCE, 2021, 896 (896) : 79 - 97
  • [35] Bijections from Weighted Dyck Paths to Schroder Paths
    Drake, Dan
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (09)
  • [36] Representation of Numerical Semigroups by Dyck Paths
    Maria Bras-Amoros
    Anna de Mier
    Semigroup Forum, 2007, 75 : 676 - 681
  • [37] Two combinatorial statistics on Dyck paths
    Denise, A.
    Simion, R.
    Discrete Mathematics, 1995, 137 (1-3):
  • [38] A distributive lattice structure connecting Dyck paths, noncrossing partitions and 312-avoiding permutations
    Barcucci, E
    Bernini, A
    Ferrari, L
    Poneti, M
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (04): : 311 - 328
  • [39] A Distributive Lattice Structure Connecting Dyck Paths, Noncrossing Partitions and 312-avoiding Permutations
    Elena Barcucci
    Antonio Bernini
    Luca Ferrari
    Maddalena Poneti
    Order, 2005, 22 : 311 - 328
  • [40] Counting Dyck Paths by Area and Rank
    Saúl A. Blanco
    T. Kyle Petersen
    Annals of Combinatorics, 2014, 18 : 171 - 197