Dyck Words, Lattice Paths, and Abelian Borders

被引:5
|
作者
Blanchet-Sadri, F. [1 ]
Chen, Kun [1 ]
Hawes, Kenneth [2 ]
机构
[1] Univ N Carolina, Dept Comp Sci, POB 26170, Greensboro, NC 27402 USA
[2] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
PERIODS; ALGORITHMS; THEOREM; FINE;
D O I
10.4204/EPTCS.252.9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use results on Dyck words and lattice paths to derive a formula for the exact number of binary words of a given length with a given minimal abelian border length, tightening a bound on that number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory, 2013) on the exact number of binary words of a given length with no abelian borders. Furthermore, we generalize these results to partial words.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [21] Some statistics on Dyck paths
    Merlini, D
    Sprugnoli, R
    Verri, MC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 101 (1-2) : 211 - 227
  • [22] Dyck paths and restricted permutations
    Mansour, Toufik
    Deng, Eva Y. P.
    Du, Rosena R. X.
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (11) : 1593 - 1605
  • [23] Water capacity of Dyck paths
    Blecher, Aubrey
    Brennan, Charlotte
    Knopfmacher, Arnold
    ADVANCES IN APPLIED MATHEMATICS, 2020, 112
  • [24] Dyck paths with coloured ascents
    Asinowski, Andrei
    Mansour, Toufik
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1262 - 1279
  • [25] ON THE NUMBER OF GENERALIZED DYCK PATHS
    Imaoka, Mitsunori
    Takata, Isao
    Fujiwara, Yu
    ARS COMBINATORIA, 2010, 97A : 269 - 278
  • [26] Dispersed Dyck paths revisited
    Prodinger, Helmut
    CONTRIBUTIONS TO MATHEMATICS, 2024, 9 : 26 - 32
  • [27] Counting strings in Dyck paths
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 2909 - 2924
  • [28] Morgan trees and Dyck paths
    Doslic, T
    CROATICA CHEMICA ACTA, 2002, 75 (04) : 881 - 889
  • [29] A bijection on bilateral Dyck paths
    Mortimer, Paul R. G.
    Prellberg, Thomas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 72 - 80
  • [30] Some strings in Dyck paths
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 39 : 49 - 72