Dyck Words, Lattice Paths, and Abelian Borders

被引:5
|
作者
Blanchet-Sadri, F. [1 ]
Chen, Kun [1 ]
Hawes, Kenneth [2 ]
机构
[1] Univ N Carolina, Dept Comp Sci, POB 26170, Greensboro, NC 27402 USA
[2] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
PERIODS; ALGORITHMS; THEOREM; FINE;
D O I
10.4204/EPTCS.252.9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use results on Dyck words and lattice paths to derive a formula for the exact number of binary words of a given length with a given minimal abelian border length, tightening a bound on that number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory, 2013) on the exact number of binary words of a given length with no abelian borders. Furthermore, we generalize these results to partial words.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [1] Dyck Words, Lattice Paths, and Abelian Borders
    Blanchet-Sadri, Francine
    Chen, Kun
    Hawes, Kenneth
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (03N04) : 203 - 226
  • [2] The phagocyte lattice of dyck words
    Baril, J. L.
    Pallo, J. M.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (2-3): : 97 - 107
  • [3] The Phagocyte Lattice of Dyck Words
    J. L. Baril
    J. M. Pallo
    Order, 2006, 23 : 97 - 107
  • [4] Abelian borders in binary words
    Christodoulakis, Manolis
    Christou, Michalis
    Crochemore, Maxime
    Iliopoulos, Costas S.
    DISCRETE APPLIED MATHEMATICS, 2014, 171 : 141 - 146
  • [5] On rational Dyck paths and the enumeration of factor-free Dyck words
    Birmajer, Daniel
    Gil, Juan B.
    Weiner, Michael D.
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 36 - 43
  • [6] Dyck Paths, Binary Words, and Grassmannian Permutations Avoiding an Increasing Pattern
    Menon, Krishna
    Singh, Anurag
    ANNALS OF COMBINATORICS, 2024, 28 (03) : 871 - 887
  • [7] A new statistic on Dyck paths for counting 3-dimensional Catalan words
    Archer, Kassie
    Graves, Christina
    DISCRETE MATHEMATICS, 2023, 346 (03)
  • [8] On generalized Dyck paths
    Rukavicka, Josef
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] GENERALIZED DYCK PATHS
    LABELLE, J
    YEH, YN
    DISCRETE MATHEMATICS, 1990, 82 (01) : 1 - 6
  • [10] Peaks in Dyck paths
    Deutsch, Emeric
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (03): : 264 - 265