Electrically tunable quantum confinement of neutral excitons

被引:29
|
作者
Thureja, Deepankur [1 ,2 ]
Imamoglu, Atac [1 ]
Smolenski, Tomasz [1 ]
Amelio, Ivan [1 ]
Popert, Alexander [1 ]
Chervy, Thibault [1 ,6 ]
Lu, Xiaobo [1 ,7 ]
Liu, Song [3 ]
Barmak, Katayun [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [5 ]
Norris, David J. [2 ]
Kroner, Martin [1 ]
Murthy, Puneet A. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Opt Mat Engn Lab, Zurich, Switzerland
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] NTT Res Inc, Phys & Informat PHI Labs, Sunnyvale, CA USA
[7] Peking Univ, Int Ctr Quantum Mat, Beijing, Peoples R China
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
POLARITONS; PHOTOLUMINESCENCE; DYNAMICS; FIELD; WIRES;
D O I
10.1038/s41586-022-04634-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots(1,2) to ultracold atoms trapped in optical tweezers(3,4). In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation(5), which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases(6,7) and on-chip optical quantum information processors(8,9).
引用
收藏
页码:298 / +
页数:22
相关论文
共 50 条
  • [41] Excitons in CdTe quantum wires with strain-induced lateral confinement
    Brinkmann, D
    Fishman, G
    Gourgon, C
    SiDang, L
    Loffler, A
    Mariette, H
    PHYSICAL REVIEW B, 1996, 54 (03): : 1872 - 1876
  • [42] Optical Study of the Anisotropic Confinement of Excitons in GaAs/AlGaAs Quantum Dots
    Yamagiwa, Masakazu
    Koguchi, Nobuyuki
    Saito, Fumiyoshi
    Ogawa, Yoshihiro
    Minami, Fujio
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2006, 4 : 446 - 449
  • [43] Stark effect of optical properties of excitons in a quantum nanorod with parabolic confinement
    Lyo, S. K.
    JOURNAL OF LUMINESCENCE, 2014, 145 : 981 - 989
  • [44] Quantum-size confinement of excitons in CuBr nanocrystals embedded in a polymer
    Oda, M
    Shen, MY
    Saito, M
    Goto, T
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (50) : 11465 - 11472
  • [45] Fine Structure of Neutral Excitons in Single GaAlAs Quantum Dots
    Molas, M.
    Golasa, K.
    Pietka, B.
    Potemski, M.
    Babinski, A.
    ACTA PHYSICA POLONICA A, 2012, 122 (06) : 988 - 990
  • [46] Neutral and charged excitons in a CdTe-based quantum well
    Gaj, JA
    Plochocka, P
    Radzewicz, C
    Kossacki, P
    Maslana, W
    Cibert, J
    Tatarenko, S
    LOW TEMPERATURE PHYSICS, 2004, 30 (11) : 848 - 852
  • [47] Energy Spectra of Excitons Bound to a Neutral Acceptor in Quantum Dots
    XIE Wen-Fang Department of Physics
    Communications in Theoretical Physics, 2004, 41 (01) : 127 - 130
  • [48] Energy spectra of excitons bound to a neutral acceptor in quantum dots
    Xie, WF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (01) : 127 - 130
  • [49] Intensity variation of excitons in magnetically tunable double quantum wells
    Lee, S
    Yang, G
    Dobrowolska, M
    Furdyna, JK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 39 (03) : 447 - 450
  • [50] Quantum Confinement of Hybrid Charge Transfer Excitons in GaN/InGaN/Organic Semiconductor Quantum Wells
    Panda, Anurag
    Forrest, Stephen R.
    NANO LETTERS, 2017, 17 (12) : 7853 - 7858