Quantum Confinement of Hybrid Charge Transfer Excitons in GaN/InGaN/Organic Semiconductor Quantum Wells

被引:8
|
作者
Panda, Anurag [1 ]
Forrest, Stephen R. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
Organic-inorganic heterojunction; wide energy gap; Poole-Frenkel emission; exciton dissociation; recombination; SOLAR-CELLS; FILMS; GAN;
D O I
10.1021/acs.nanolett.7b04122
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate hybrid charge transfer exciton (HCTE) confinement in organic inorganic (OI) quantum wells (QWs) comprising a thin InGaN layer bound on one side by GaN and on the other by the organic semiconductors, tetraphenyldibenzoperiflanthene (DBP) or 4,4'-bis(N-carbazoly1)-1,1'-biphenyl (CBP). A binding energy of 10 meV is calculated for the Coulombically bound free HCTE state between a delocalized electron in GaN and a hole localized in DBP. The binding energy of the HCTE increases to 165 meV when the electron is confined to a 1.5 nm In0.21Ga0.79N QW (HCTEQw). The existence of the HCTEQw is confirmed by measuring the voltage-dependent DBP exciton dissociation yield at the OI heterojunction in the QW devices that decrease with increasing In concentration and decreasing electric field, matching the trends predicted by Poole-Frenkel emission. Combining spectroscopic measurements with optical models, we find that 14 +/- 3% of the excitons that reach the GaN/DBP heterojunction form HCTEs and dissociate into free charges, while the remainder recombine. A high nonradiative recombination rate through defect states at the heterointerface account for the lack of observation of HCTEQw photoluminescence from GaN/InGaN/CBP QWs at temperatures as low as 10 K.
引用
收藏
页码:7853 / 7858
页数:6
相关论文
共 50 条
  • [1] Dynamics of localized excitons in InGaN/GaN quantum wells
    Yu, HB
    Htoon, H
    deLozanne, A
    Shih, CK
    Grudowski, PA
    Dupuis, RD
    Zeng, K
    Mair, R
    Lin, JY
    Jiang, HX
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (04): : 2215 - 2217
  • [2] Luminescence of localised excitons in InGaN/GaN multiple quantum wells
    Miasojedovas, S
    Jursenas, S
    Kurilcik, G
    Zukauskas, A
    Feng, SW
    Yang, CC
    Chuang, HW
    Kuo, CT
    Tsang, JS
    [J]. INTERNATIONAL WORKSHOP ON NITRIDE SEMICONDUCTORS, PROCEEDINGS, 2002, : 483 - 486
  • [3] Growth and characterization of InGaN nanodots hybrid with InGaN/GaN quantum wells
    Yang, G. F.
    Chen, P.
    Yu, Z. G.
    Liu, B.
    Xie, Z. L.
    Xiu, X. Q.
    Wu, Z. L.
    Xu, F.
    Xu, Z.
    Hua, X. M.
    Han, P.
    Shi, Y.
    Zhang, R.
    Zheng, Y. D.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 109 (02): : 337 - 341
  • [4] Growth and characterization of InGaN nanodots hybrid with InGaN/GaN quantum wells
    G. F. Yang
    P. Chen
    Z. G. Yu
    B. Liu
    Z. L. Xie
    X. Q. Xiu
    Z. L. Wu
    F. Xu
    Z. Xu
    X. M. Hua
    P. Han
    Y. Shi
    R. Zhang
    Y. D. Zheng
    [J]. Applied Physics A, 2012, 109 : 337 - 341
  • [5] Effect of Deep Centers on Charge-Carrier Confinement in InGaN/GaN Quantum Wells and on LED Efficiency
    N. I. Bochkareva
    Y. G. Shreter
    [J]. Semiconductors, 2018, 52 : 934 - 941
  • [6] Effect of Deep Centers on Charge-Carrier Confinement in InGaN/GaN Quantum Wells and on LED Efficiency
    Bochkareva, N. I.
    Shreter, Y. G.
    [J]. SEMICONDUCTORS, 2018, 52 (07) : 934 - 941
  • [7] Excitons and charged excitons in semiconductor quantum wells
    Riva, C
    Peeters, FM
    Varga, K
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 13873 - 13881
  • [8] Two types of quantum-confinement characters for the bound states in the InGaN/GaN quantum wells
    Tit, Nacir
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 44 (01): : 298 - 306
  • [9] Hydrostatic pressure dependence of indirect and direct excitons in InGaN/GaN quantum wells
    Staszczak, G.
    Trzeciakowski, W.
    Monroy, E.
    Bercha, A.
    Muziol, I. G.
    Skierbiszewski, C.
    Perlin, P.
    Suski, T.
    [J]. PHYSICAL REVIEW B, 2020, 101 (08)
  • [10] Cubic GaN and InGaN/GaN quantum wells
    Binks, D. J.
    Dawson, P.
    Oliver, R. A.
    Wallis, D. J.
    [J]. APPLIED PHYSICS REVIEWS, 2022, 9 (04)