High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries

被引:50
|
作者
Hu, Zhicheng [1 ]
Liu, Jianguo [2 ,3 ]
Gan, Tao [2 ,3 ]
Lu, Dongfang [1 ]
Wang, Yuhua [1 ]
Zheng, Xiayu [1 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Peoples R China
[2] Guangdong Acad Sci, Inst Resources Utilizat & Rare Earth Dev, Guangzhou 510650, Peoples R China
[3] Guangdong Prov Key Lab Mineral Resources Dev & Co, Guangzhou 510650, Peoples R China
关键词
Spent LIBs; High-intensity magnetic separation; LiFePO4; Graphite; SINGLE WIRES; PURIFICATION; TECHNOLOGY; FENTON; ENERGY; COBALT; LICOO2; WASTE;
D O I
10.1016/j.seppur.2022.121486
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Numerous end-of-life LiFePO4 batteries will emerge soon due to their limited lifespan. High reagent cost and environmental pollution of hydrometallurgy are the main factors that prevent the economic recycling of spent LiFePO4. In this paper, an environment-friendly physical method, that is, high-intensity magnetic separation (HIMS), was introduced for the first time to demonstrate its feasibility in preconcentrating the LiFePO4 from spent LiFePO4 batteries. Numerical simulation combined with laboratory experiments of two typical HIMS separators, namely high gradient magnetic separator (HGMS) and induced roll magnetic separator (IRMS), were conducted. Simulation analysis indicated that the separation performance was related to the magnetic field strength. In the HGMS experiments using 0.21 mm electrode powder (after grinding) as feed, the concentrate grade and recovery of LiFePO4 were 74.54% and 96.60%, respectively. By contrast, in the IRMS experiments using electrode pieces (after shredding) as feed, the concentrate grade and recovery of LiFePO4 cathode pieces were 93.30% and 98.69%, respectively. Surface morphological analysis of electrode powder implied that superfine LiFePO4 particles produced by grinding adhered to or were embedded in coarse graphite particles, which seriously deteriorated the separation performance. By contrast, electrode pieces were considerably larger size, and the generation of superfine LiFePO4 particles can thus be avoided.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries
    Zhong, Xuehu
    Liu, Wei
    Han, Junwei
    Jiao, Fen
    Qin, Wenqing
    Liu, Tong
    Zhao, Chunxiao
    WASTE MANAGEMENT, 2019, 89 : 83 - 93
  • [12] Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries
    Gerold, Eva
    Luidold, Stefan
    Antrekowitsch, Helmut
    METALS, 2021, 11 (07)
  • [13] Direct regeneration of LiFePO4 cathode by inherent impurities in spent lithium-ion batteries
    Huang, Meiting
    Wang, Zhihao
    Yang, Haitao
    Yang, Liming
    Chen, Kechun
    Yu, Haoxuan
    Xu, Chenxi
    Guo, Yingying
    Shao, Penghui
    Chen, Liang
    Luo, Xubiao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 586 - 597
  • [14] LiFePO4/C nanocomposites for lithium-ion batteries
    Eftekhari, Ali
    JOURNAL OF POWER SOURCES, 2017, 343 : 395 - 411
  • [15] Green Phosphate Route of Regeneration of LiFePO4 Composite Materials from Spent Lithium-Ion Batteries
    Wang, Zixuan
    Wu, Dandan
    Wang, Xi
    Huang, Ye
    Wu, Xu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (02) : 1181 - 1194
  • [16] Reuse, Recycle, and Regeneration of LiFePO4 Cathode from Spent Lithium-Ion Batteries for Rechargeable Lithium- and Sodium-Ion Batteries
    Gangaja, Binitha
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (13): : 4711 - 4721
  • [17] A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries
    Mahandra, Harshit
    Ghahreman, Ahmad
    RESOURCES CONSERVATION AND RECYCLING, 2021, 175
  • [18] Recovery and Reuse of Spent LiFePO4 Batteries
    Qin, Xianzhong
    Yang, Gai
    Cai, Feipeng
    Wang, Bo
    Jiang, Bo
    Chen, Hua
    Tan, Chunhui
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2019, 22 (03) : 119 - 124
  • [19] Separation and recovery of graphite from spent lithium-ion batteries for synthesizing micro-expanded sorbents
    Geng, Zhiwei
    Liu, Junjie
    Geng, Yanni
    Peng, Mingming
    Xiong, Mopeng
    Shi, Hui
    Luo, Xubiao
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (42) : 20250 - 20259
  • [20] Thermal Modeling of Lithium-ion Batteries with LiFePO4 Electrodes
    Gwak, Geonhui
    Ju, Hyunchul
    2018 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2018, : 824 - 830