Direct regeneration of LiFePO4 cathode by inherent impurities in spent lithium-ion batteries

被引:2
|
作者
Huang, Meiting [1 ]
Wang, Zhihao [1 ]
Yang, Haitao [1 ,2 ]
Yang, Liming [1 ]
Chen, Kechun [1 ]
Yu, Haoxuan [1 ]
Xu, Chenxi [3 ]
Guo, Yingying [1 ]
Shao, Penghui [1 ]
Chen, Liang [4 ]
Luo, Xubiao [1 ,5 ]
机构
[1] Nanchang Hangkong Univ, Natl Local Joint Engn Res Ctr Heavy Met Pollutants, Nanchang 330063, Peoples R China
[2] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Peoples R China
[3] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Hunan, Peoples R China
[4] Hunan Inst Sci & Technol, Sch Chem & Chem Engn, Key Lab Hunan Prov Adv Carbon Based Funct Mat, Yueyang 414006, Peoples R China
[5] Jinggangshan Univ, Sch Life Sci, Jian 343009, Peoples R China
基金
中国博士后科学基金;
关键词
Direct regeneration; S-LFP cathode; Conductive carbon; PVDF; Electrochemical performance; IRON PHOSPHATE;
D O I
10.1016/j.jcis.2024.10.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct regeneration method, recognized for its cost-effectiveness, has garnered considerable attentions in the field of battery recycling. In this study, a novel direct regeneration strategy is proposed to repair spent LiFePO4 (S-LFP) cathodes without the need for impurity removal. Instead, the residual conductive carbon and polyvinylidene fluoride (PVDF) in S-LFP are employed as inherent reductive agents. Systematic characterization and analysis reveal that the failure of S-LFP primarily originates from a substantial loss of Li+ and the conversion of LiFePO4 to FePO4. Meanwhile, it is demonstrated that both residual conductive carbon and PVDF play positive roles in promoting the regeneration of S-LFP through distinct mechanisms. As a result, the regenerated LFP exhibits significant recovery in crystal structure and chemical composition as compared to S-LFP, which leads to notably improved lithium storage performance. Furthermore, to further enhance the lithium storage property, a specific amount of glucose (10 %) is introduced during the regeneration of S-LFP, yielding a regenerated product that performs comparably to commercial LFP. Clearly, our approach, in contrast to traditional regeneration methods, maximizes the utilization of residual impurities within S-LFP, resulting in effective regeneration of SLFP, thereby proving both informative and cost-effective.
引用
收藏
页码:586 / 597
页数:12
相关论文
共 50 条
  • [1] Reuse, Recycle, and Regeneration of LiFePO4 Cathode from Spent Lithium-Ion Batteries for Rechargeable Lithium- and Sodium-Ion Batteries
    Gangaja, Binitha
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (13): : 4711 - 4721
  • [2] Electrochemical Relithiation in Spent LiFePO4 Slurry for Regeneration of Lithium-Ion Battery Cathode
    Chen, Shuo
    Zhang, Baichao
    Yang, Lu
    Hu, Xinyu
    Hong, Ningyun
    Wang, Haoji
    Huang, Jiangnan
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    INORGANIC CHEMISTRY, 2024, 63 (37) : 17166 - 17175
  • [3] Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries
    Xin Tang
    Rui Wang
    Yifei Ren
    Jidong Duan
    Jing Li
    Pengyu Li
    Journal of Materials Science, 2020, 55 : 13036 - 13048
  • [4] Direct regeneration of fluorine-doped carbon-coated LiFePO4 cathode materials from spent lithium-ion batteries
    Han, Yurong
    Fang, Yinzhuang
    Yan, Menglong
    Qiu, Haoyu
    Han, Yifeng
    Chen, Yi
    Lin, Liangyou
    Qian, Jingwen
    Mei, Tao
    Wang, Xianbao
    GREEN CHEMISTRY, 2024, 26 (18) : 9791 - 9801
  • [5] Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: Extracting Li from brine
    Miao Du
    Jin-Zhi Guo
    Shuo-Hang Zheng
    Yan Liu
    Jia-Lin Yang
    Kai-Yang Zhang
    Zhen-Yi Gu
    Xiao-Tong Wang
    Xing-Long Wu
    ChineseChemicalLetters, 2023, 34 (06) : 586 - 592
  • [6] Start from the source: direct treatment of a degraded LiFePO4 cathode for efficient recycling of spent lithium-ion batteries
    Xu, Yunlong
    Qiu, Xuejing
    Zhang, Baichao
    Di, Andi
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    GREEN CHEMISTRY, 2022, 24 (19) : 7448 - 7457
  • [7] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [8] Synthesis of LiFePO4/C composite cathode for lithium-ion batteries
    Cech, O.
    Thomas, J. E.
    Moreno, M. S.
    Visintin, A.
    Sedlarikova, M.
    Vondrak, J.
    ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 11), 2011, 32 (01): : 23 - 31
  • [9] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284
  • [10] Selective lithium recovery and regeneration of LiFePO4 from spent lithium-ion batteries: An efficient and green process
    Hu, Haozheng
    Yao, Yaochun
    Meng, Xianghao
    Li, Yin
    Zhang, Keyu
    Zhang, Shaoze
    Yang, Yusong
    Xu, Yanqiu
    Hu, Junxian
    JOURNAL OF POWER SOURCES, 2025, 631