High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries

被引:50
|
作者
Hu, Zhicheng [1 ]
Liu, Jianguo [2 ,3 ]
Gan, Tao [2 ,3 ]
Lu, Dongfang [1 ]
Wang, Yuhua [1 ]
Zheng, Xiayu [1 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Peoples R China
[2] Guangdong Acad Sci, Inst Resources Utilizat & Rare Earth Dev, Guangzhou 510650, Peoples R China
[3] Guangdong Prov Key Lab Mineral Resources Dev & Co, Guangzhou 510650, Peoples R China
关键词
Spent LIBs; High-intensity magnetic separation; LiFePO4; Graphite; SINGLE WIRES; PURIFICATION; TECHNOLOGY; FENTON; ENERGY; COBALT; LICOO2; WASTE;
D O I
10.1016/j.seppur.2022.121486
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Numerous end-of-life LiFePO4 batteries will emerge soon due to their limited lifespan. High reagent cost and environmental pollution of hydrometallurgy are the main factors that prevent the economic recycling of spent LiFePO4. In this paper, an environment-friendly physical method, that is, high-intensity magnetic separation (HIMS), was introduced for the first time to demonstrate its feasibility in preconcentrating the LiFePO4 from spent LiFePO4 batteries. Numerical simulation combined with laboratory experiments of two typical HIMS separators, namely high gradient magnetic separator (HGMS) and induced roll magnetic separator (IRMS), were conducted. Simulation analysis indicated that the separation performance was related to the magnetic field strength. In the HGMS experiments using 0.21 mm electrode powder (after grinding) as feed, the concentrate grade and recovery of LiFePO4 were 74.54% and 96.60%, respectively. By contrast, in the IRMS experiments using electrode pieces (after shredding) as feed, the concentrate grade and recovery of LiFePO4 cathode pieces were 93.30% and 98.69%, respectively. Surface morphological analysis of electrode powder implied that superfine LiFePO4 particles produced by grinding adhered to or were embedded in coarse graphite particles, which seriously deteriorated the separation performance. By contrast, electrode pieces were considerably larger size, and the generation of superfine LiFePO4 particles can thus be avoided.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Shape and Size Control of LiFePO4 for High-Performance Lithium-Ion Batteries
    Liang, Yachun
    Wen, Kechun
    Mao, Yiwu
    Liu, Zhongping
    Zhu, Gaolong
    Yang, Fei
    He, Weidong
    CHEMELECTROCHEM, 2015, 2 (09): : 1227 - 1237
  • [32] Start from the source: direct treatment of a degraded LiFePO4 cathode for efficient recycling of spent lithium-ion batteries
    Xu, Yunlong
    Qiu, Xuejing
    Zhang, Baichao
    Di, Andi
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    GREEN CHEMISTRY, 2022, 24 (19) : 7448 - 7457
  • [33] Selective Recovery of Lithium from Spent Lithium-Ion Batteries
    Zhu, Guohui
    Huan, Hongxian
    Yu, Dawei
    Guo, Xueyi
    Tian, Qinghua
    PROGRESS IN CHEMISTRY, 2023, 35 (02) : 287 - 301
  • [34] Recycle of LiFePO4 cathode materials from spent lithium ion batteries and the electrochemical performance
    Bian, Doucheng
    Liu, Shulin
    Sun, Yonghui
    Yang, Zeheng
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2015, 43 (11): : 1511 - 1516
  • [35] Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries
    Yu, Seungho
    Kim, Soo
    Kim, Tae Young
    Nam, Jin Hyun
    Cho, Won Il
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2013, 34 (01): : 79 - 88
  • [36] Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4
    Pier Paolo Prosini
    Cinzia Cento
    Alfonso Pozio
    Journal of Solid State Electrochemistry, 2014, 18 : 795 - 804
  • [37] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [38] Zwitterionic polymer as binder for LiFePO4 cathodes in lithium-ion batteries
    Yang, Meng
    Rong, Zhuolin
    Li, Xuewei
    Yuan, Bing
    Zhang, Wangqing
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [39] Synthesis of LiFePO4/C composite cathode for lithium-ion batteries
    Cech, O.
    Thomas, J. E.
    Moreno, M. S.
    Visintin, A.
    Sedlarikova, M.
    Vondrak, J.
    ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 11), 2011, 32 (01): : 23 - 31
  • [40] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284