Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels

被引:22
|
作者
Liu, Liguang [1 ,2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[2] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Metric measure space; Heat kernel; Peetre maximal function; Frame; MORREY SPACES; HARDY-SPACES; MAXIMAL FUNCTIONS; DECOMPOSITIONS; DISTRIBUTIONS; DUALITY;
D O I
10.1007/s13348-015-0142-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a space of homogeneous type satisfying the reverse doubling condition and the non-collapsing condition. In this paper, the authors introduce Besov-type spaces and Triebel-Lizorkin-type spaces associated to a nonnegative self-adjoint operator whose heat kernel satisfies sub-Gaussian upper bound estimate, Holder continuity, and stochastic completeness. The novelty in this article is that the indices here can be take full range of all possible values as in the Euclidean setting. Characterizations of these spaces via Peetre maximal functions and the heat semigroup are established for full range of possible indices. Also, frame characterizations of these spaces are given. When is the Laplacian operator on , these spaces coincide with the Besov-type and Triebel-Lizorkin-type spaces on studied in (Yuan et al. Lecture Notes in Mathematics, vol 2005, 2010). In the case and the smoothness index is around zero, comparisons of these spaces with the Besov and Triebel-Lizorkin spaces studied in (Han et al. Abstr Appl Anal 1-250, 2008, Art ID 893409) are also presented.
引用
收藏
页码:247 / 310
页数:64
相关论文
共 50 条
  • [31] Regularity of Characteristic Functions in Besov-Type and Triebel–Lizorkin-Type Spaces
    Wen Yuan
    Winfried Sickel
    Dachun Yang
    Journal of Fourier Analysis and Applications, 2025, 31 (3)
  • [32] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [33] New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces
    Dachun Yang
    Wen Yuan
    Mathematische Zeitschrift, 2010, 265 : 451 - 480
  • [34] Variable Triebel-Lizorkin-Type Spaces
    Drihem, Douadi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1817 - 1856
  • [35] Compact embeddings in Besov-type and Triebel–Lizorkin-type spaces on bounded domains
    Helena F. Gonçalves
    Dorothee D. Haroske
    Leszek Skrzypczak
    Revista Matemática Complutense, 2021, 34 : 761 - 795
  • [36] CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES
    Drihem, D.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (02): : 24 - 57
  • [37] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ANNALEN, 2025,
  • [38] Fourier Multipliers on Triebel-Lizorkin-Type Spaces
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [39] POINTWISE AND GRAND MAXIMAL FUNCTION CHARACTERIZATIONS OF BESOV-TYPE AND TRIEBEL-LIZORKIN TYPE SPACES
    Soto, Tomas
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 103 - 117
  • [40] 2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces
    Koichi Saka
    Revista Matemática Complutense, 2022, 35 : 923 - 962