Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations

被引:0
|
作者
Bu, Fan [1 ]
Hytonen, Tuomas [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
关键词
MORREY SPACES; PSEUDODIFFERENTIAL-OPERATORS; MOLECULAR DECOMPOSITION; SINGULAR-INTEGRALS; A(P) WEIGHTS; DISTRIBUTIONS; EMBEDDINGS; INEQUALITIES; MULTIPLIERS; EQUATIONS;
D O I
10.1007/s00208-024-03059-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let , and It is well known that Besov-type spaces. B s,t p,q with and Triebel-Lizorkin-type spaces. F s,t p,q with when or with when t = 0 on Rn consist of a general family of function spaces that cover not only the well-known Besov and Triebel-Lizorkin spaces and (when t = 0) but also several other function spaces of interest, such as Morrey spaces and Q spaces. In three successive articles, the authors develop a complete real-variable theory of matrix-weighted Besov-type spaces (W) and matrix-weighted Triebel-Lizorkin-type spaces (W) on Rn, where W is a matrixvalued Muckenhoupt Ap weight. This article is the first one, whosemain novelty exists in that the authors introduce the new concept, Ap-dimensions of matrix weights, and intensively study their properties, especially those elaborate properties expressed via reducing operators. The authors then introduce the spaces (W) and (W) and, using Ap-dimensions and their nice properties, the authors establish the.-transform characterization of (W) and (W). The Ap-dimensions of matrix weights
引用
收藏
页数:81
相关论文
共 50 条
  • [1] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [2] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces by Differences
    Drihem, Douadi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [3] A Note on Weighted Besov-Type and Triebel-Lizorkin-Type Spaces
    Tang, Canqin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [4] Generalized Besov-type and Triebel-Lizorkin-type spaces
    Haroske, Dorothee d.
    Liu , Zhen
    STUDIA MATHEMATICA, 2023, 273 (02) : 161 - 199
  • [5] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces via Averages on Balls
    Zhuo, Ciqiang
    Sickel, Winfried
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (03): : 655 - 672
  • [6] CHARACTERIZATIONS OF SLICE BESOV-TYPE AND SLICE TRIEBEL-LIZORKIN-TYPE SPACES AND APPLICATIONS
    Lu, Yuan
    Zhou, Jiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 643 - 684
  • [7] Function spaces of Besov-type and Triebel-Lizorkin-type - a survey
    Yang Da-chun
    Yuan Wen
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 405 - 426
  • [8] New applications of Besov-type and Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 73 - 85
  • [9] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    DRIHEM Douadi
    Science China(Mathematics), 2013, 56 (05) : 1073 - 1086
  • [10] Hausdorff Besov-type and Triebel-Lizorkin-type spaces and their applications
    Zhuo, Ciqiang
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 998 - 1018