Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations

被引:0
|
作者
Bu, Fan [1 ]
Hytonen, Tuomas [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
关键词
MORREY SPACES; PSEUDODIFFERENTIAL-OPERATORS; MOLECULAR DECOMPOSITION; SINGULAR-INTEGRALS; A(P) WEIGHTS; DISTRIBUTIONS; EMBEDDINGS; INEQUALITIES; MULTIPLIERS; EQUATIONS;
D O I
10.1007/s00208-024-03059-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let , and It is well known that Besov-type spaces. B s,t p,q with and Triebel-Lizorkin-type spaces. F s,t p,q with when or with when t = 0 on Rn consist of a general family of function spaces that cover not only the well-known Besov and Triebel-Lizorkin spaces and (when t = 0) but also several other function spaces of interest, such as Morrey spaces and Q spaces. In three successive articles, the authors develop a complete real-variable theory of matrix-weighted Besov-type spaces (W) and matrix-weighted Triebel-Lizorkin-type spaces (W) on Rn, where W is a matrixvalued Muckenhoupt Ap weight. This article is the first one, whosemain novelty exists in that the authors introduce the new concept, Ap-dimensions of matrix weights, and intensively study their properties, especially those elaborate properties expressed via reducing operators. The authors then introduce the spaces (W) and (W) and, using Ap-dimensions and their nice properties, the authors establish the.-transform characterization of (W) and (W). The Ap-dimensions of matrix weights
引用
收藏
页数:81
相关论文
共 50 条
  • [21] Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    COLLECTANEA MATHEMATICA, 2016, 67 (02) : 247 - 310
  • [22] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces III: characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderon-Zygmund operators
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [23] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480
  • [24] Compact embeddings in Besov-type and Triebel-Lizorkin-type spaces on bounded domains
    Goncalves, Helena F.
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (03): : 761 - 795
  • [25] Matrix-weighted Besov-Triebel-Lizorkin spaces with logarithmic smoothness
    Li, Ziwei
    Yang, Dachun
    Yuan, Wen
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [26] Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator
    Helena F. Gonçalves
    Dorothee D. Haroske
    Leszek Skrzypczak
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2481 - 2516
  • [27] Localization property of generalized Besov-type spaces, Triebel-Lizorkin-type spaces and their associated multiplier spaces
    Djeriou, Aissa
    FILOMAT, 2024, 38 (07) : 2261 - 2275
  • [28] Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator
    Goncalves, Helena F.
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2481 - 2516
  • [29] POINTWISE AND GRAND MAXIMAL FUNCTION CHARACTERIZATIONS OF BESOV-TYPE AND TRIEBEL-LIZORKIN TYPE SPACES
    Soto, Tomas
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 103 - 117
  • [30] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157