Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels

被引:22
|
作者
Liu, Liguang [1 ,2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[2] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Metric measure space; Heat kernel; Peetre maximal function; Frame; MORREY SPACES; HARDY-SPACES; MAXIMAL FUNCTIONS; DECOMPOSITIONS; DISTRIBUTIONS; DUALITY;
D O I
10.1007/s13348-015-0142-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a space of homogeneous type satisfying the reverse doubling condition and the non-collapsing condition. In this paper, the authors introduce Besov-type spaces and Triebel-Lizorkin-type spaces associated to a nonnegative self-adjoint operator whose heat kernel satisfies sub-Gaussian upper bound estimate, Holder continuity, and stochastic completeness. The novelty in this article is that the indices here can be take full range of all possible values as in the Euclidean setting. Characterizations of these spaces via Peetre maximal functions and the heat semigroup are established for full range of possible indices. Also, frame characterizations of these spaces are given. When is the Laplacian operator on , these spaces coincide with the Besov-type and Triebel-Lizorkin-type spaces on studied in (Yuan et al. Lecture Notes in Mathematics, vol 2005, 2010). In the case and the smoothness index is around zero, comparisons of these spaces with the Besov and Triebel-Lizorkin spaces studied in (Han et al. Abstr Appl Anal 1-250, 2008, Art ID 893409) are also presented.
引用
收藏
页码:247 / 310
页数:64
相关论文
共 50 条
  • [1] Generalized Besov-type and Triebel-Lizorkin-type spaces
    Haroske, Dorothee d.
    Liu , Zhen
    STUDIA MATHEMATICA, 2023, 273 (02) : 161 - 199
  • [2] Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels
    Liguang Liu
    Dachun Yang
    Wen Yuan
    Collectanea Mathematica, 2016, 67 : 247 - 310
  • [3] Function spaces of Besov-type and Triebel-Lizorkin-type - a survey
    Yang Da-chun
    Yuan Wen
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 405 - 426
  • [4] New applications of Besov-type and Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 73 - 85
  • [5] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    DRIHEM Douadi
    Science China(Mathematics), 2013, 56 (05) : 1073 - 1086
  • [6] Hausdorff Besov-type and Triebel-Lizorkin-type spaces and their applications
    Zhuo, Ciqiang
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 998 - 1018
  • [7] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Drihem, Douadi
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 1073 - 1086
  • [8] A Note on Weighted Besov-Type and Triebel-Lizorkin-Type Spaces
    Tang, Canqin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [9] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces by Differences
    Drihem, Douadi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [10] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Douadi Drihem
    Science China Mathematics, 2013, 56 : 1073 - 1086