Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels

被引:22
|
作者
Liu, Liguang [1 ,2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[2] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Metric measure space; Heat kernel; Peetre maximal function; Frame; MORREY SPACES; HARDY-SPACES; MAXIMAL FUNCTIONS; DECOMPOSITIONS; DISTRIBUTIONS; DUALITY;
D O I
10.1007/s13348-015-0142-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a space of homogeneous type satisfying the reverse doubling condition and the non-collapsing condition. In this paper, the authors introduce Besov-type spaces and Triebel-Lizorkin-type spaces associated to a nonnegative self-adjoint operator whose heat kernel satisfies sub-Gaussian upper bound estimate, Holder continuity, and stochastic completeness. The novelty in this article is that the indices here can be take full range of all possible values as in the Euclidean setting. Characterizations of these spaces via Peetre maximal functions and the heat semigroup are established for full range of possible indices. Also, frame characterizations of these spaces are given. When is the Laplacian operator on , these spaces coincide with the Besov-type and Triebel-Lizorkin-type spaces on studied in (Yuan et al. Lecture Notes in Mathematics, vol 2005, 2010). In the case and the smoothness index is around zero, comparisons of these spaces with the Besov and Triebel-Lizorkin spaces studied in (Han et al. Abstr Appl Anal 1-250, 2008, Art ID 893409) are also presented.
引用
收藏
页码:247 / 310
页数:64
相关论文
共 50 条
  • [21] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces via Averages on Balls
    Zhuo, Ciqiang
    Sickel, Winfried
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (03): : 655 - 672
  • [22] CHARACTERIZATIONS OF SLICE BESOV-TYPE AND SLICE TRIEBEL-LIZORKIN-TYPE SPACES AND APPLICATIONS
    Lu, Yuan
    Zhou, Jiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 643 - 684
  • [23] Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator
    Helena F. Gonçalves
    Dorothee D. Haroske
    Leszek Skrzypczak
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2481 - 2516
  • [24] Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator
    Goncalves, Helena F.
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2481 - 2516
  • [25] Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means
    Yang, Dachun
    Yuan, Wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) : 3805 - 3820
  • [26] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157
  • [27] On the functions acting on Besov-type and Lizorkin-Triebel-type spaces
    Saadi, Mohamed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (08) : 1497 - 1506
  • [28] Function algebras of Besov and Triebel-Lizorkin-type
    Bensaid, Fares
    Moussai, Madani
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1281 - 1300
  • [29] Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces
    Goncalves, Helena F.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [30] Function algebras of Besov and Triebel-Lizorkin-type
    Fares Bensaid
    Madani Moussai
    Czechoslovak Mathematical Journal, 2023, 73 : 1281 - 1300