Efficient two-stage fuzzy clustering of microarray gene expression data

被引:0
|
作者
Mukhopadhyay, Anirban [1 ]
Maulik, Ujjwal
Bandyopadhyay, Sanghamitra
机构
[1] Univ Kalyani, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
关键词
microarray gene expression data; cluster validity indices; fuzzy clustering; significant multi-class membership; variable string length genetic algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an efficient two-stage clustering method for clustering microarray gene expression time series data. The algorithm is based on the identification of genes having significant membership to multiple classes. A recently proposed variable string length genetic scheme and an iterated version of well known fuzzy C-means algorithm are utilized as the underlying clustering techniques. The performance of the two-stage clustering technique has been compared with the hierarchical clustering algorithms, those are widely used for clustering gene expression data, to prove its effectiveness on some publicly available gene expression data.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 50 条
  • [41] Clustering gene expression signals from retinal microarray data
    Fleury, G
    Hero, A
    Yoshida, S
    Carter, T
    Barlow, C
    Swaroop, A
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4024 - 4027
  • [42] A novel clustering method for analysis of gene microarray expression data
    Luo, F
    Liu, J
    DATA MINING FOR BIOMEDICAL APPLICATIONS, PROCEEDINGS, 2006, 3916 : 71 - 81
  • [43] Clustering analysis of microarray gene expression data by splitting algorithm
    Wang, RY
    Scharenbroich, L
    Hart, C
    Wold, B
    Mjolsness, E
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) : 692 - 706
  • [44] An evolutionary clustering algorithm for gene expression microarray data analysis
    Ma, Patrick C. H.
    Chan, Keith C. C.
    Yao, Xin
    Chiu, David K. Y.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) : 296 - 314
  • [45] TWO-STAGE OPTIMAL CONFIGURATION OF MICROGRID BASED ON FUZZY SCENE CLUSTERING
    Mi Y.
    Li H.
    Chen B.
    Peng J.
    Wei W.
    Yao Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (09): : 1137 - 1145
  • [46] The modified fuzzy art and a two-stage clustering approach to cell design
    Oezdemir, Rifat Guercan
    Gencyilmaz, Guenes
    Aktin, Tuelin
    INFORMATION SCIENCES, 2007, 177 (23) : 5219 - 5236
  • [47] Fuzzy efficiency ranking in fuzzy two-stage data envelopment analysis
    Liu, Shiang-Tai
    OPTIMIZATION LETTERS, 2014, 8 (02) : 633 - 652
  • [48] A Two-Stage Evolutionary Fuzzy Clustering Framework for Noisy Image Segmentation
    Jiao, Licheng
    Zhang, Mengxuan
    Liu, Fang
    Ma, Wenping
    Li, Lingling
    IEEE ACCESS, 2020, 8 : 186663 - 186678
  • [49] A neuro-fuzzy two-stage clustering approach to customer segmentation
    Hiziroglu A.
    Journal of Marketing Analytics, 2013, 1 (4) : 202 - 221
  • [50] Fuzzy efficiency ranking in fuzzy two-stage data envelopment analysis
    Shiang-Tai Liu
    Optimization Letters, 2014, 8 : 633 - 652