Efficient two-stage fuzzy clustering of microarray gene expression data

被引:0
|
作者
Mukhopadhyay, Anirban [1 ]
Maulik, Ujjwal
Bandyopadhyay, Sanghamitra
机构
[1] Univ Kalyani, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
关键词
microarray gene expression data; cluster validity indices; fuzzy clustering; significant multi-class membership; variable string length genetic algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an efficient two-stage clustering method for clustering microarray gene expression time series data. The algorithm is based on the identification of genes having significant membership to multiple classes. A recently proposed variable string length genetic scheme and an iterated version of well known fuzzy C-means algorithm are utilized as the underlying clustering techniques. The performance of the two-stage clustering technique has been compared with the hierarchical clustering algorithms, those are widely used for clustering gene expression data, to prove its effectiveness on some publicly available gene expression data.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 50 条
  • [31] Fuzzy clustering analysis of microarray data
    Han, Lixin
    Zeng, Xiaoqin
    Yan, Hong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2008, 222 (H7) : 1143 - 1148
  • [32] Fuzzy Types Clustering for Microarray Data
    Kim, Seo Young
    Choi, Tai Myong
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 4, 2005, 4 : 12 - 15
  • [33] Process efficiency of two-stage systems with fuzzy data
    Lozano, Sebastian
    FUZZY SETS AND SYSTEMS, 2014, 243 : 36 - 49
  • [34] A DEA Model For Two-Stage Systems With Fuzzy Data
    Lozano, Sebastin
    Moreno, Placido
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [35] Classification of Microarray Gene Expression Data using Weighted Grey Wolf Optimizer based Fuzzy Clustering
    Achom, Amika
    Das, Ranjita
    Pakray, Partha
    Saha, Sriparna
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 2705 - 2710
  • [36] Clustering analysis of microarray gene expression data with new clustering ensemble method
    Luo, Fei
    Liu, Juan
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 500 - 504
  • [37] Assessing agreement of clustering methods with gene expression microarray data
    Liu, Xueli
    Lee, Sheng-Chien
    Casella, George
    Peter, Gary F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5356 - 5366
  • [38] PARAMETRIC VALIDITY INDEX OF CLUSTERING FOR MICROARRAY GENE EXPRESSION DATA
    Fa, Rui
    Nandi, Asoke K.
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [39] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75
  • [40] Kernel hierarchical gene clustering from microarray expression data
    Qin, J
    Lewis, DP
    Noble, WS
    BIOINFORMATICS, 2003, 19 (16) : 2097 - 2104