Pre-trained Models for Sonar Images

被引:0
|
作者
Valdenegro-Toro, Matias [1 ]
Preciado-Grijalva, Alan [1 ,2 ]
Wehbe, Bilal [1 ]
机构
[1] German Res Ctr Artificial Intelligence, D-28359 Bremen, Germany
[2] Bonn Rhein Sieg Univ Appl Sci, D-53757 St Augustin, Germany
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Machine learning and neural networks are now ubiquitous in sonar perception, but it lags behind the computer vision field due to the lack of data and pre-trained models specifically for sonar images. In this paper we present the Marine Debris Turntable dataset and produce pre-trained neural networks trained on this dataset, meant to fill the gap of missing pre-trained models for sonar images. We train Resnet 20, MobileNets, DenseNet121, SqueezeNet, MiniXception, and an Autoencoder, over several input image sizes, from 32 x 32 to 96 x 96, on the Marine Debris turntable dataset. We evaluate these models using transfer learning for low-shot classification in the Marine Debris Watertank and another dataset captured using a Gemini 720i sonar. Our results show that in both datasets the pre-trained models produce good features that allow good classification accuracy with low samples (10-30 samples per class). The Gemini dataset validates that the features transfer to other kinds of sonar sensors. We expect that the community benefits from the public release of our pre-trained models and the turntable dataset.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [22] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [23] Semantic Programming by Example with Pre-trained Models
    Verbruggen, Gust
    Le, Vu
    Gulwani, Sumit
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (OOPSLA):
  • [24] Aliasing Backdoor Attacks on Pre-trained Models
    Wei, Cheng'an
    Lee, Yeonjoon
    Chen, Kai
    Meng, Guozhu
    Lv, Peizhuo
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 2707 - 2724
  • [25] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [26] Continual Learning with Pre-Trained Models: A Survey
    Zhou, Da-Wei
    Sun, Hai-Long
    Ning, Jingyi
    Ye, Han-Jia
    Zhan, De-Chuan
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8363 - 8371
  • [27] Code Execution with Pre-trained Language Models
    Liu, Chenxiao
    Lu, Shuai
    Chen, Weizhu
    Jiang, Daxin
    Svyatkovskiy, Alexey
    Fu, Shengyu
    Sundaresan, Neel
    Duan, Nan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 4984 - 4999
  • [28] Are Pre-trained Convolutions Better than Pre-trained Transformers?
    Tay, Yi
    Dehghani, Mostafa
    Gupta, Jai
    Aribandi, Vamsi
    Bahri, Dara
    Qin, Zhen
    Metzler, Donald
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4349 - 4359
  • [29] Weight Poisoning Attacks on Pre-trained Models
    Kurita, Keita
    Michel, Paul
    Neubig, Graham
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2793 - 2806
  • [30] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211