Pre-trained Models for Sonar Images

被引:0
|
作者
Valdenegro-Toro, Matias [1 ]
Preciado-Grijalva, Alan [1 ,2 ]
Wehbe, Bilal [1 ]
机构
[1] German Res Ctr Artificial Intelligence, D-28359 Bremen, Germany
[2] Bonn Rhein Sieg Univ Appl Sci, D-53757 St Augustin, Germany
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Machine learning and neural networks are now ubiquitous in sonar perception, but it lags behind the computer vision field due to the lack of data and pre-trained models specifically for sonar images. In this paper we present the Marine Debris Turntable dataset and produce pre-trained neural networks trained on this dataset, meant to fill the gap of missing pre-trained models for sonar images. We train Resnet 20, MobileNets, DenseNet121, SqueezeNet, MiniXception, and an Autoencoder, over several input image sizes, from 32 x 32 to 96 x 96, on the Marine Debris turntable dataset. We evaluate these models using transfer learning for low-shot classification in the Marine Debris Watertank and another dataset captured using a Gemini 720i sonar. Our results show that in both datasets the pre-trained models produce good features that allow good classification accuracy with low samples (10-30 samples per class). The Gemini dataset validates that the features transfer to other kinds of sonar sensors. We expect that the community benefits from the public release of our pre-trained models and the turntable dataset.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [22] Are Pre-trained Convolutions Better than Pre-trained Transformers?
    Tay, Yi
    Dehghani, Mostafa
    Gupta, Jai
    Aribandi, Vamsi
    Bahri, Dara
    Qin, Zhen
    Metzler, Donald
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4349 - 4359
  • [23] A Systematic Survey of Chemical Pre-trained Models
    Xia, Jun
    Zhu, Yanqiao
    Du, Yuanqi
    Li, Stan Z.
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6787 - 6795
  • [24] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [25] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211
  • [26] Weight Poisoning Attacks on Pre-trained Models
    Kurita, Keita
    Michel, Paul
    Neubig, Graham
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2793 - 2806
  • [27] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [28] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [29] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880
  • [30] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    [J]. 2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,