Aliasing Backdoor Attacks on Pre-trained Models

被引:0
|
作者
Wei, Cheng'an [1 ,2 ]
Lee, Yeonjoon [3 ]
Chen, Kai [1 ,2 ]
Meng, Guozhu [1 ,2 ]
Lv, Peizhuo [1 ,2 ]
机构
[1] Chinese Acad Sci, SKLOIS, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Hanyang Univ, Ansan, South Korea
基金
新加坡国家研究基金会; 北京市自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pre-trained deep learning models are widely used to train accurate models with limited data in a short time. To reduce computational costs, pre-trained neural networks often employ subsampling operations. However, recent studies have shown that these subsampling operations can cause aliasing issues, resulting in problems with generalization. Despite this knowledge, there is still a lack of research on the relationship between the aliasing of neural networks and security threats, such as adversarial attacks and backdoor attacks, which manipulate model predictions without the awareness of victims. In this paper, we propose the aliasing backdoor, a low-cost and data-free attack that threatens mainstream pre-trained models and transfers to all student models fine-tuned from them. The key idea is to create an aliasing error in the strided layers of the network and manipulate a benign input to a targeted intermediate representation. To evaluate the attack, we conduct experiments on image classification, face recognition, and speech recognition tasks. The results show that our approach can effectively attack mainstream models with a success rate of over 95%. Our research, based on the aliasing error caused by subsampling, reveals a fundamental security weakness of strided layers, which are widely used in modern neural network architectures. To the best of our knowledge, this is the first work to exploit the strided layers to launch backdoor attacks.
引用
收藏
页码:2707 / 2724
页数:18
相关论文
共 50 条
  • [1] Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning
    Li, Linyang
    Song, Demin
    Li, Xiaonan
    Zeng, Jiehang
    Ma, Ruotian
    Qiu, Xipeng
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3023 - 3032
  • [2] Multi-target Backdoor Attacks for Code Pre-trained Models
    Li, Yanzhou
    Liu, Shangqing
    Chen, Kangjie
    Xie, Xiaofei
    Zhang, Tianwei
    Liu, Yang
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 7236 - 7254
  • [3] Backdoor Attacks Against Transfer Learning With Pre-Trained Deep Learning Models
    Wang, Shuo
    Nepal, Surya
    Rudolph, Carsten
    Grobler, Marthie
    Chen, Shangyu
    Chen, Tianle
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (03) : 1526 - 1539
  • [4] Unveiling potential threats: backdoor attacks in single-cell pre-trained models
    Sicheng Feng
    Siyu Li
    Luonan Chen
    Shengquan Chen
    Cell Discovery, 10 (1)
  • [5] Backdoor Pre-trained Models Can Transfer to All
    Shen, Lujia
    Ji, Shouling
    Zhang, Xuhong
    Li, Jinfeng
    Chen, Jing
    Shi, Jie
    Fang, Chengfang
    Yin, Jianwei
    Wang, Ting
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 3141 - 3158
  • [6] CBAs: Character-level Backdoor Attacks against Chinese Pre-trained Language Models
    He, Xinyu
    Hao, Fengrui
    Gu, Tianlong
    Chang, Liang
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2024, 27 (03)
  • [7] Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks
    Xi, Zhaohan
    Du, Tianyu
    Li, Changjiang
    Pang, Ren
    Ji, Shouling
    Chen, Jinghui
    Ma, Fenglong
    Wang, Ting
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Red Alarm for Pre-trained Models: Universal Vulnerability to Neuron-level Backdoor Attacks
    Zhang, Zhengyan
    Xiao, Guangxuan
    Li, Yongwei
    Lv, Tian
    Qi, Fanchao
    Liu, Zhiyuan
    Wang, Yasheng
    Jiang, Xin
    Sun, Maosong
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (02) : 180 - 193
  • [9] Weight Poisoning Attacks on Pre-trained Models
    Kurita, Keita
    Michel, Paul
    Neubig, Graham
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2793 - 2806
  • [10] BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning
    Jia, Jinyuan
    Liu, Yupei
    Gong, Neil Zhenqiang
    43RD IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2022), 2022, : 2043 - 2059