Aliasing Backdoor Attacks on Pre-trained Models

被引:0
|
作者
Wei, Cheng'an [1 ,2 ]
Lee, Yeonjoon [3 ]
Chen, Kai [1 ,2 ]
Meng, Guozhu [1 ,2 ]
Lv, Peizhuo [1 ,2 ]
机构
[1] Chinese Acad Sci, SKLOIS, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Hanyang Univ, Ansan, South Korea
基金
新加坡国家研究基金会; 北京市自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pre-trained deep learning models are widely used to train accurate models with limited data in a short time. To reduce computational costs, pre-trained neural networks often employ subsampling operations. However, recent studies have shown that these subsampling operations can cause aliasing issues, resulting in problems with generalization. Despite this knowledge, there is still a lack of research on the relationship between the aliasing of neural networks and security threats, such as adversarial attacks and backdoor attacks, which manipulate model predictions without the awareness of victims. In this paper, we propose the aliasing backdoor, a low-cost and data-free attack that threatens mainstream pre-trained models and transfers to all student models fine-tuned from them. The key idea is to create an aliasing error in the strided layers of the network and manipulate a benign input to a targeted intermediate representation. To evaluate the attack, we conduct experiments on image classification, face recognition, and speech recognition tasks. The results show that our approach can effectively attack mainstream models with a success rate of over 95%. Our research, based on the aliasing error caused by subsampling, reveals a fundamental security weakness of strided layers, which are widely used in modern neural network architectures. To the best of our knowledge, this is the first work to exploit the strided layers to launch backdoor attacks.
引用
收藏
页码:2707 / 2724
页数:18
相关论文
共 50 条
  • [31] Learning to Modulate pre-trained Models in RL
    Schmied, Thomas
    Hofmarcher, Markus
    Paischer, Fabian
    Pascanu, Razvan
    Hochreiter, Sepp
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Semantic Programming by Example with Pre-trained Models
    Verbruggen, Gust
    Le, Vu
    Gulwani, Sumit
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (OOPSLA):
  • [33] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [34] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [35] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [36] Are Pre-trained Convolutions Better than Pre-trained Transformers?
    Tay, Yi
    Dehghani, Mostafa
    Gupta, Jai
    Aribandi, Vamsi
    Bahri, Dara
    Qin, Zhen
    Metzler, Donald
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4349 - 4359
  • [37] Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors
    Lu, Yiwei
    Yang, Matthew Y. R.
    Kamath, Gautam
    Yu, Yaoliang
    IEEE CONFERENCE ON SAFE AND TRUSTWORTHY MACHINE LEARNING, SATML 2024, 2024, : 327 - 343
  • [38] A Systematic Survey of Chemical Pre-trained Models
    Xia, Jun
    Zhu, Yanqiao
    Du, Yuanqi
    Li, Stan Z.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6787 - 6795
  • [39] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211
  • [40] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154