Joint spectra of spherical Aluthge transforms of commuting n-tuples of Hilbert space operators

被引:12
|
作者
Benhida, Chafiq [1 ]
Curto, Raul E. [2 ]
Lee, Sang Hoon [3 ]
Yoon, Jasang [4 ]
机构
[1] Univ Sci & Technol Lille, UFR Math, F-59655 Villeneuve Dascq, France
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Chungnam Natl Univ, Dept Math, Daejeon 34134, South Korea
[4] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
NUMERICAL RANGE; TAYLOR; CONTRACTIVITY;
D O I
10.1016/j.crma.2019.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = (T-1, ... T-n) be a commuting n-tuple of operators on a Hilbert space H, and let T-i equivalent to ViP (1 <= i <= n) be its canonical joint polar decomposition (i.e. P := root T-1*T-1+ ... + T-n*T-n, (V-1,..., V-n) a joint partial isometry, and boolean AND(n)(i-1) ker T-i = boolean AND(n)(i-1) ker V-i = ker P). The spherical Aluthge transform of T is the (necessarily commuting) n-tuple (T) over cap := (root PV1 root P, ..., root PVn, root P). We prove that sigma(T)((T) over cap) = sigma(T)(T), where sigma(T) denotes the Taylor spectrum. We do this in two stages: away from the origin, we use tools and techniques from criss-cross commutativity; at the origin, we show that the left invertibility of T or (T) over cap implies the invertibility of P. As a consequence, we can readily extend our main result to other spectral systems that rely on the Koszul complex for their definitions. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:799 / 802
页数:4
相关论文
共 50 条
  • [31] Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (I)
    Sever S Dragomir
    Yeol Je Cho
    Young-Ho Kim
    Journal of Inequalities and Applications, 2013
  • [32] Commuting Tuples of Normal Operators in Hilbert Spaces
    Hamadi Baklouti
    Kais Feki
    Complex Analysis and Operator Theory, 2020, 14
  • [33] Commuting Tuples of Normal Operators in Hilbert Spaces
    Baklouti, Hamadi
    Feki, Kais
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (06)
  • [34] Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II)
    Dragomir, Sever S.
    Cho, Yeol Je
    Kim, Young-Ho
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [35] MODELS FOR N-TUPLES OF NONCOMMUTING OPERATORS
    BUNCE, JW
    JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (01) : 21 - 30
  • [36] Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (I)
    Dragomir, Sever S.
    Cho, Yeol Je
    Kim, Young-Ho
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [37] Aluthge Transforms and Common Invariant Subspaces for a Commuting n-Tuple of Operators
    Kim, Jaewoong
    Yoon, Jasang
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 87 (02) : 245 - 262
  • [38] COMMUTING TUPLES OF (n, m)-POWER NORMAL OPERATORS IN HILBERT SPACES
    Mahmoud, Sid ahmed ould ahmed
    AL Rwaily, Asma
    JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (02): : 1 - 13
  • [39] SEMI-FREDHOLM SPECTRUM AND QUASI-SIMILARITY OF N-TUPLES OF COMMUTING OPERATORS
    ZHELEV, ZJ
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (03): : 9 - 11
  • [40] A Classification of n-Tuples of Commuting Shifts of Finite Multiplicity
    Timko, Edward J.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (02)