Commuting Tuples of Normal Operators in Hilbert Spaces

被引:5
|
作者
Baklouti, Hamadi [1 ]
Feki, Kais [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Normal operator; Tensor product; Spectral radius; Numerical radius; Operator norm; TENSOR-PRODUCTS; SPECTRAL-RADIUS;
D O I
10.1007/s11785-020-01013-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we aim to study the tensor product and the tensor sum of two jointly-normal operators. Mainly, an alternative proof is given for the result of ChO and Takaguchi (Pac J Math 95(1):27-35,1981) asserting that: if T is jointly-normal, then r(T) = parallel to T parallel to = omega(T), where r(T), omega(T) and parallel to T parallel to denote respectively the joint spectral radius, the joint numerical radius and the joint norm of an operator tuple T. It seems that this new method allows to handle more general situations, namely the operators acting on semi-hilbertian spaces.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Commuting Tuples of Normal Operators in Hilbert Spaces
    Hamadi Baklouti
    Kais Feki
    [J]. Complex Analysis and Operator Theory, 2020, 14
  • [2] COMMUTING TUPLES OF (n, m)-POWER NORMAL OPERATORS IN HILBERT SPACES
    Mahmoud, Sid ahmed ould ahmed
    AL Rwaily, Asma
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (02): : 1 - 13
  • [3] A Note on Doubly Commuting Tuples of Hyponormal Operators on Hilbert Spaces
    Feki, Kais
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [4] A Note on Doubly Commuting Tuples of Hyponormal Operators on Hilbert Spaces
    Kais Feki
    [J]. Results in Mathematics, 2020, 75
  • [5] On (A, m)-isometric commuting tuples of operators on a Hilbert space
    Ghribi, Salima
    Jeridi, Nader
    Rabaoui, Rchid
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11): : 2097 - 2116
  • [6] (A, m)-SYMMETRIC COMMUTING TUPLES OF OPERATORS ON A HILBERT SPACE
    Cho, Muneo
    Mahmoud, Sid Ahmed Ould Ahmed
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 931 - 947
  • [7] Distance between commuting tuples of normal operators
    Bhatia, R
    Elsner, L
    Semrl, P
    [J]. ARCHIV DER MATHEMATIK, 1998, 71 (03) : 229 - 232
  • [8] PERTURBATION OF SPECTRUM OF NORMAL OPERATORS AND OF COMMUTING TUPLES
    DAVIS, C
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 219 - 222
  • [9] Distance between commuting tuples of normal operators
    Rajendra Bhatia
    Ludwig Elsner
    Peter Šemrl
    [J]. Archiv der Mathematik, 1998, 71 : 229 - 232
  • [10] m-isometric commuting tuples of operators on a Hilbert space
    Gleason, Jim
    Richter, Stefan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) : 181 - 196