(A, m)-SYMMETRIC COMMUTING TUPLES OF OPERATORS ON A HILBERT SPACE

被引:13
|
作者
Cho, Muneo [1 ]
Mahmoud, Sid Ahmed Ould Ahmed [2 ]
机构
[1] Kanagawa Univ, Dept Math, Hiratsuka, Kanagawa 2591293, Japan
[2] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
来源
关键词
Hilbert space; symmetric operator; symmetric commuting tuple of operators;
D O I
10.7153/mia-2019-22-63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = (T-1,...,T-d) and A be a commuting d-tuple of operators and a positive operator on a complex Hilbert space, respectively. We introduce an (A, m) -symmetric commuting tuple of operators and characterize the joint approximate point spectrum of (A, m) -symmetric commuting tuple T. Next we introduce an (A, m) -expansive symmetric commuting tuple of operators and show basic properties of (A, m) -expansive symmetric commuting tuple.
引用
收藏
页码:931 / 947
页数:17
相关论文
共 50 条
  • [1] On (A, m)-isometric commuting tuples of operators on a Hilbert space
    Ghribi, Salima
    Jeridi, Nader
    Rabaoui, Rchid
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11): : 2097 - 2116
  • [2] m-isometric commuting tuples of operators on a Hilbert space
    Gleason, Jim
    Richter, Stefan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) : 181 - 196
  • [3] m-Isometric Commuting Tuples of Operators on a Hilbert Space
    Jim Gleason
    Stefan Richter
    [J]. Integral Equations and Operator Theory, 2006, 56 : 181 - 196
  • [4] On (m, C)-Isometric Commuting Tuples of Operators on a Hilbert Space
    Mahmoud, Sid Ahmed Ould Ahmed
    Cho, Muneo
    Lee, Ji Eun
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [5] COMMUTING TUPLES OF (n, m)-POWER NORMAL OPERATORS IN HILBERT SPACES
    Mahmoud, Sid ahmed ould ahmed
    AL Rwaily, Asma
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (02): : 1 - 13
  • [6] Commuting Tuples of Normal Operators in Hilbert Spaces
    Hamadi Baklouti
    Kais Feki
    [J]. Complex Analysis and Operator Theory, 2020, 14
  • [7] Commuting Tuples of Normal Operators in Hilbert Spaces
    Baklouti, Hamadi
    Feki, Kais
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (06)
  • [8] ON THE JOINT (m, q)-PARTIAL ISOMETRIES AND THE JOINT m- INVERTIBLE TUPLES OF COMMUTING OPERATORS ON A HILBERT SPACE
    Ahmed, Ould Ahmed Mahmoud Sid
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 438 - 463
  • [9] On (A, m)-Symmetric Operators in a Hilbert Space
    N. Jeridi
    R. Rabaoui
    [J]. Results in Mathematics, 2019, 74
  • [10] On (A,m)-Symmetric Operators in a Hilbert Space
    Jeridi, N.
    Rabaoui, R.
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (03)