Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (I)

被引:3
|
作者
Dragomir, Sever S. [1 ,2 ]
Cho, Yeol Je [3 ,4 ]
Kim, Young-Ho [5 ]
机构
[1] Victoria Univ Technol, Sch Comp Sci & Math, Melbourne, Vic 8001, Australia
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[4] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[5] Changwon Natl Univ, Dept Math, Chang Won 641773, South Korea
基金
新加坡国家研究基金会;
关键词
bounded linear operators; functions of normal operators; inequalities for operators; norm and numerical radius inequalities; Kato's inequality; FURUTA INEQUALITY; HEINZ; EXTENSIONS;
D O I
10.1186/1029-242X-2013-21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by the use of the famous Kato's inequality for bounded linear operators, we establish some inequalities for n-tuples of operators and apply them for functions of normal operators defined by power series as well as for some norms and numerical radii that arise in multivariate operator theory.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (I)
    Sever S Dragomir
    Yeol Je Cho
    Young-Ho Kim
    [J]. Journal of Inequalities and Applications, 2013
  • [2] Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (II)
    Sever S Dragomir
    Yeol Je Cho
    Young-Ho Kim
    [J]. Journal of Inequalities and Applications, 2013
  • [3] Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II)
    Dragomir, Sever S.
    Cho, Yeol Je
    Kim, Young-Ho
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [4] QUASIANALYTIC n-TUPLES OF HILBERT SPACE OPERATORS
    Kerchy, Laszlo
    [J]. JOURNAL OF OPERATOR THEORY, 2019, 81 (01) : 3 - 20
  • [5] Hybrid normed ideal perturbations of n-tuples of operators I
    Voiculescu, Dan-Virgil
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 169 - 184
  • [6] MODELS FOR N-TUPLES OF NONCOMMUTING OPERATORS
    BUNCE, JW
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (01) : 21 - 30
  • [7] On simple n-tuples of subspaces of a Hilbert space
    Yu. S. Samoilenko
    A. V. Strelets
    [J]. Ukrainian Mathematical Journal, 2009, 61 : 1956 - 1994
  • [8] APPLICATIONS OF KATO'S INEQUALITY TO OPERATOR-VALUED INTEGRALS ON HILBERT SPACES
    Dragomir, S. S.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (04)
  • [9] Discrete n-tuples in Hausdorff spaces
    Carlson, TJ
    Hindman, N
    Strauss, D
    [J]. FUNDAMENTA MATHEMATICAE, 2005, 187 (02) : 111 - 126
  • [10] ON SIMPLE n-TUPLES OF SUBSPACES OF A HILBERT SPACE
    Samoilenko, Yu. S.
    Strelets, A. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (12) : 1956 - 1994