QUASIANALYTIC n-TUPLES OF HILBERT SPACE OPERATORS

被引:5
|
作者
Kerchy, Laszlo [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
Unitary asymptote; quasianalytic operators; commuting n-tuples of operators; residual sets; BEHAVIOR;
D O I
10.7900/jot.2017sep07.2205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The residual and (*)-residual parts of the unitary dilation proved to be especially useful in the study of contractions. A more direct approach to these components, originated in B. Sz.-Nagy, Acta Sci. Math. (Szeged) 11(1947), 152-157, leads to the concept of unitary asymptote, and opens the way for generalizations to more general settings. In this paper a systematic study of unitary asymptotes of commuting n-tuples of general Hilbert space operators is initiated. Special emphasis is put on the study of the quasianalyticity property, which constitutes homogeneous behaviour in localization, and plays a crucial role in the quest for proper hyperinvariant subspaces.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 50 条
  • [1] On simple n-tuples of subspaces of a Hilbert space
    Yu. S. Samoilenko
    A. V. Strelets
    [J]. Ukrainian Mathematical Journal, 2009, 61 : 1956 - 1994
  • [2] ON SIMPLE n-TUPLES OF SUBSPACES OF A HILBERT SPACE
    Samoilenko, Yu. S.
    Strelets, A. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (12) : 1956 - 1994
  • [3] Joint spectra of spherical Aluthge transforms of commuting n-tuples of Hilbert space operators
    Benhida, Chafiq
    Curto, Raul E.
    Lee, Sang Hoon
    Yoon, Jasang
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (10) : 799 - 802
  • [4] Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (II)
    Sever S Dragomir
    Yeol Je Cho
    Young-Ho Kim
    [J]. Journal of Inequalities and Applications, 2013
  • [5] Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (I)
    Sever S Dragomir
    Yeol Je Cho
    Young-Ho Kim
    [J]. Journal of Inequalities and Applications, 2013
  • [6] On dilation and commuting liftings of n-tuples of commuting Hilbert space contractions
    Burdak, Zbigniew
    Grygierzec, Wieslaw
    [J]. ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2020, 19 (01) : 121 - 139
  • [7] Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II)
    Dragomir, Sever S.
    Cho, Yeol Je
    Kim, Young-Ho
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [8] Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (I)
    Dragomir, Sever S.
    Cho, Yeol Je
    Kim, Young-Ho
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] MODELS FOR N-TUPLES OF NONCOMMUTING OPERATORS
    BUNCE, JW
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (01) : 21 - 30
  • [10] A Functional Calculus for n-Tuples of Noncommuting Operators
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (02) : 225 - 236