Bayesian non-parametric gradient histogram estimation for texture-enhanced image deblurring

被引:12
|
作者
Song, Chunwei [1 ]
Deng, Hong [2 ]
Gao, Huijun [1 ]
Zhang, Hongzhi [2 ]
Zuo, Wangmeng [2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, 92 West Dazhi St, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, 92 West Dazhi St, Harbin 150001, Peoples R China
关键词
Image deblurring; Hyper-Laplacian; Gradient histogram matching; Gaussian Processes regression; KERNEL ESTIMATION; RESTORATION; FRAMEWORK; ALGORITHM; CAMERA;
D O I
10.1016/j.neucom.2016.02.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image deblurring aims to restore the latent clean image with textures and details from the blurry observation, and is a classical yet active inverse problem in image processing and low level vision. Even though various methods based on image priors have been proposed, the deblurring results by the existing methods usually tend to be over-smoothed and cannot recover fine scale textures. On the other hand, gradient histogram prior has been introduced for texture-enhanced image denoising but the gradient histogram estimation model cannot be used to estimate reference histogram from blurry image. In this paper, we first suggest a gradient histogram preserving (GHP) based image deblurring method, where the reference histogram is parameterized by Hyper-Laplacian distribution. Considering the complexity of blurring process, a Bayesian non-parametric method, Gaussian Processes regression, is utilized for estimating histogram parameters. The experiments demonstrate that, the histogram parameter estimation method is effective, and the proposed GHP based image deblurring method can well restore image textures and improve image quality. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [1] A Gradient Histogram Preservation Based Texture Enhanced Model for Image deblurring
    Deng, Hong
    Yan, Zifei
    Zuo, Wangmeng
    Zhang, David
    [J]. PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 383 - 388
  • [2] Gradient Histogram Estimation and Preservation for Texture Enhanced Image Denoising
    Zuo, Wangmeng
    Zhang, Lei
    Song, Chunwei
    Zhang, David
    Gao, Huijun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) : 2459 - 2472
  • [3] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [4] Texture Enhanced Image Denoising via Gradient Histogram Preservation
    Zuo, Wangmeng
    Zhang, Lei
    Song, Chunwei
    Zhang, David
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1203 - 1210
  • [5] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [6] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [7] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [8] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [9] Non-parametric Bayesian Dictionary Learning for Image Super Resolution
    He, Li
    Qi, Hairong
    Zaretzki, Russell
    [J]. 2011 FUTURE OF INSTRUMENTATION INTERNATIONAL WORKSHOP (FIIW), 2011,
  • [10] Bayesian non-parametric conditional copula estimation of twin data
    Dalla Valle, Luciana
    Leisen, Fabrizio
    Rossini, Luca
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (03) : 523 - 548