On the zeros of period functions associated to the Eisenstein series for Γ0+ (N)
被引:0
|
作者:
Choi, SoYoung
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, RINS, 501 Jinjudae-ro,, Jinju 52828, South KoreaGyeongsang Natl Univ, Dept Math Educ, RINS, 501 Jinjudae-ro,, Jinju 52828, South Korea
Choi, SoYoung
[1
]
Im, Bo-Hae
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak-ro, Daejeon 34141, South KoreaGyeongsang Natl Univ, Dept Math Educ, RINS, 501 Jinjudae-ro,, Jinju 52828, South Korea
Im, Bo-Hae
[2
]
机构:
[1] Gyeongsang Natl Univ, Dept Math Educ, RINS, 501 Jinjudae-ro,, Jinju 52828, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak-ro, Daejeon 34141, South Korea
Period functions;
Eisenstein series;
N-self-inversive polynomials;
SELF-INVERSIVE POLYNOMIALS;
D O I:
10.1016/j.jnt.2021.06.021
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the period functions associated to the Eisenstein series for the Fricke group Gamma(+)(0) (N), the odd parts of the period functions and certain polynomials obtained from the period functions for Gamma(+)(0) (N), and we prove that all zeros of each of them lie on the circle |z| = 1/root N by applying the properties of a self-inversive polynomial. In particular, our result proves Berndt and Straub's suggested problem. (c) 2021 Elsevier Inc. All rights reserved.