On the zeros of period functions associated to the Eisenstein series for Γ0+ (N)

被引:0
|
作者
Choi, SoYoung [1 ]
Im, Bo-Hae [2 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, RINS, 501 Jinjudae-ro,, Jinju 52828, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak-ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Period functions; Eisenstein series; N-self-inversive polynomials; SELF-INVERSIVE POLYNOMIALS;
D O I
10.1016/j.jnt.2021.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the period functions associated to the Eisenstein series for the Fricke group Gamma(+)(0) (N), the odd parts of the period functions and certain polynomials obtained from the period functions for Gamma(+)(0) (N), and we prove that all zeros of each of them lie on the circle |z| = 1/root N by applying the properties of a self-inversive polynomial. In particular, our result proves Berndt and Straub's suggested problem. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 239
页数:40
相关论文
共 50 条