Real zeros of Eisenstein series and Rankin-Selberg L-functions

被引:0
|
作者
C. Bauer
Y. Wang
机构
[1] Dolby Laboratories,Department of Mathematics
[2] Capital Normal University,undefined
来源
Acta Mathematica Hungarica | 2007年 / 115卷
关键词
Eisenstein series; Rankin-Selberg ; -function; 11F03; 11M36; 11M20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the Eisenstein series E(z, s) have no real zeroes for s ∈ (0, 1) when the value of the imaginary part of z is in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{1}{5}$$ \end{document} < Im z < 4.94. For very large and very small values of the imaginary part of z, E(z, s) have real zeros in (½, 1), i.e. GRH does not hold for the Eisenstein series. Using these properties, we prove that the Rankin-Selberg L-function attached with the Ramanujan τ-function has no real zeros in the critical strip, except at the central point s = ½.
引用
收藏
页码:13 / 27
页数:14
相关论文
共 50 条