A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh

被引:4
|
作者
Cui, Jintao [1 ]
Cao, Fuzheng [2 ]
Sun, Zhengjia [3 ]
Zhu, Peng [4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
[3] Shenzhen Univ, Coll Econ, Shenzhen 518060, Guangdong, Peoples R China
[4] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
a posteriori error estimate; discontinuous Galerkin methods; polytopal mesh; second-order elliptic problems; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS; CONVERGENCE; APPROXIMATIONS; SUPERCONVERGENCE; CONSTRUCTION;
D O I
10.1002/num.22443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we derive a posteriori error estimates for discontinuous Galerkin finite element method on polytopal mesh. We construct a reliable and efficient a posteriori error estimator on general polygonal or polyhedral meshes. An adaptive algorithm based on the error estimator and DG method is proposed to solve a variety of test problems. Numerical experiments are performed to illustrate the effectiveness of the algorithm.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [41] A New a Posteriori Error Estimate for Adaptive Finite Element Methods
    Huang, Yunqing
    Wei, Huayi
    Yang, Wei
    Yi, Nianyu
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 63 - 74
  • [42] AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Braess, D.
    Fraunholz, T.
    Hoppe, R. H. W.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2121 - 2136
  • [43] A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BENARD PROBLEM
    Chang, Yanzhen
    Yang, Danping
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (01) : 68 - 87
  • [44] UNIFORMLY A POSTERIORI ERROR ESTIMATE FOR THE FINITE ELEMENT METHOD TO A MODEL PARAMETER DEPENDENT PROBLEM
    Yiran Zhang Jun Hu LMAM and School of Mathematical Sciences
    [J]. Journal of Computational Mathematics, 2008, 26 (05) : 716 - 727
  • [45] A residual a posteriori error estimate for the Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (08): : 1423 - 1458
  • [46] Uniformly a posteriori error estimate for the finite element method to a model parameter dependent problem
    LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
    [J]. J Comput Math, 2008, 5 (716-727):
  • [47] A robust a posteriori error estimate for the Fortin-Soulie finite-element method
    Blacker, DJ
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (12) : 1863 - 1876
  • [48] Uniformly a posteriori error estimate for the finite element method to a model parameter dependent problem
    Zhang, Yiran
    Hu, Jun
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (05) : 716 - 727
  • [49] Anisotropic a posteriori error estimate for the virtual element method
    Antonietti, P. F.
    Berrone, S.
    Borio, A.
    D'Auria, A.
    Verani, M.
    Weisser, S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1273 - 1312
  • [50] Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique
    Dong, Yiyi
    Yuan, Si
    Xing, Qinyan
    [J]. ENGINEERING COMPUTATIONS, 2019, 36 (06) : 2010 - 2033