Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning

被引:13
|
作者
Foo, Ken Y. [1 ,2 ,3 ]
Newman, Kyle [1 ,2 ,3 ]
Fang, Qi [1 ,2 ,3 ]
Gong, Peijun [1 ,2 ,3 ]
Ismail, Hina M. [1 ,2 ,3 ]
Lakhiani, Devina D. [1 ,2 ,3 ]
Zilkens, Renate [1 ,2 ,4 ]
Dessauvagie, Benjamin F. [5 ,6 ]
Latham, Bruce [6 ,7 ]
Saunders, Christobel M. [8 ,9 ,10 ]
Chin, Lixin [1 ,2 ,3 ]
Kennedy, Brendan F. [1 ,2 ,3 ,11 ]
机构
[1] Harry Perkins Inst Med Res, QEII Med Ctr, BRITElab, Nedlands, WA, Australia
[2] Univ Western Australia, Ctr Med Res, Perth, WA 6009, Australia
[3] Univ Western Australia, Sch Engn, Dept Elect Elect & Comp Engn, Perth, WA 6009, Australia
[4] Univ Western Australia, Med Sch, Div Surg, Perth, WA 6009, Australia
[5] Univ Western Australia, Med Sch, Div Pathol & Lab Med, Perth, WA 6009, Australia
[6] Fiona Stanley Hosp, PathWest, Murdoch, WA 6150, Australia
[7] Univ Notre Dame, Sch Med, Fremantle, WA 6160, Australia
[8] Fiona Stanley Hosp, Breast Ctr, Murdoch, WA 6150, Australia
[9] Royal Perth Hosp, Breast Clin, Perth, WA 6000, Australia
[10] Univ Melbourne, Melbourne Med Sch, Dept Surg, Parkville, Vic 3010, Australia
[11] Australian Res Council Ctr Personalised Therapeut, Perth, WA 6000, Australia
来源
BIOMEDICAL OPTICS EXPRESS | 2022年 / 13卷 / 06期
基金
澳大利亚研究理事会;
关键词
QUANTITATIVE MICRO-ELASTOGRAPHY; CONVOLUTIONAL NEURAL-NETWORKS; CONSERVING SURGERY; MARGIN ASSESSMENT; INTRAOPERATIVE ASSESSMENT; DIAGNOSTIC-ACCURACY; REPEAT SURGERY; CANCER; DIFFERENTIATION; RECURRENCE;
D O I
10.1364/BOE.455110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate a convolutional neural network (CNN) for multi-class breast tissue classification as adipose tissue, benign dense tissue, or malignant tissue, using multi-channel optical coherence tomography (OCT) and attenuation images, and a novel Matthews correlation coefficient (MCC)-based loss function that correlates more strongly with performance metrics than the commonly used cross-entropy loss. We hypothesized that using multi-channel images would increase tumor detection performance compared to using OCT alone. 5,804 images from 29 patients were used to fine-tune a pre-trained ResNet-18 network. Adding attenuation images to OCT images yields statistically significant improvements in several performance metrics, including benign dense tissue sensitivity (68.0% versus 59.6%), malignant tissue positive predictive value (PPV) (79.4% versus 75.5%), and total accuracy (85.4% versus 83.3%), indicating that the additional contrast from attenuation imaging is most beneficial for distinguishing between
引用
收藏
页码:3380 / 3400
页数:21
相关论文
共 50 条
  • [1] Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network
    Nawaz, Majid
    Sewissy, Adel A.
    Soliman, Taysir Hassan A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (06) : 316 - 322
  • [2] Classification of pachychoroid on optical coherence tomography using deep learning
    Nam Yeo Kang
    Ho Ra
    Kook Lee
    Jun Hyuk Lee
    Won Ki Lee
    Jiwon Baek
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259 : 1803 - 1809
  • [3] Classification of pachychoroid on optical coherence tomography using deep learning
    Kang, Nam Yeo
    Ra, Ho
    Lee, Kook
    Lee, Jun Hyuk
    Lee, Won Ki
    Baek, Jiwon
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2021, 259 (07) : 1803 - 1809
  • [4] Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography
    Abdolmanafi, Atefeh
    Duong, Luc
    Dahdah, Nagib
    Cheriet, Farida
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02): : 1203 - 1220
  • [5] Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification
    Vang, Yeeleng S.
    Chen, Zhen
    Xie, Xiaohui
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 914 - 922
  • [6] Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning
    Peng, Nian
    Xu, Chengli
    Shen, Yi
    Yuan, Wu
    Yang, Xiaoyu
    Qi, Changhai
    Qiu, Haixia
    Gu, Ying
    Chen, Defu
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (12): : 6697 - 6714
  • [7] Multi-class classification of breast cancer abnormality using transfer learning
    Rani, Neha
    Gupta, Deepak Kumar
    Singh, Samayveer
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 75085 - 75100
  • [8] Multi-Ideology Multi-Class Extremism Classification Using Deep Learning Techniques
    Gaikwad, Mayur
    Ahirrao, Swati
    Kotecha, Ketan
    Abraham, Ajith
    IEEE ACCESS, 2022, 10 : 104829 - 104843
  • [9] Plaque phenotyping using deep learning in optical coherence tomography imaging
    Yamaji, K.
    Kohjitani, H.
    Watanabe, H.
    Taniwaki, M.
    Akashi, R.
    Kubo, S.
    Ohira, H.
    Numasawa, Y.
    Arikawa, M.
    Iwama, M.
    Kitai, T.
    Kobayashi, Y.
    Tomohisa, T.
    Yamaji, Y.
    Ono, K.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [10] Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images
    Mi, Weiming
    Li, Junjie
    Guo, Yucheng
    Ren, Xinyu
    Liang, Zhiyong
    Zhang, Tao
    Zou, Hao
    CANCER MANAGEMENT AND RESEARCH, 2021, 13 : 4605 - 4617