Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning

被引:13
|
作者
Foo, Ken Y. [1 ,2 ,3 ]
Newman, Kyle [1 ,2 ,3 ]
Fang, Qi [1 ,2 ,3 ]
Gong, Peijun [1 ,2 ,3 ]
Ismail, Hina M. [1 ,2 ,3 ]
Lakhiani, Devina D. [1 ,2 ,3 ]
Zilkens, Renate [1 ,2 ,4 ]
Dessauvagie, Benjamin F. [5 ,6 ]
Latham, Bruce [6 ,7 ]
Saunders, Christobel M. [8 ,9 ,10 ]
Chin, Lixin [1 ,2 ,3 ]
Kennedy, Brendan F. [1 ,2 ,3 ,11 ]
机构
[1] Harry Perkins Inst Med Res, QEII Med Ctr, BRITElab, Nedlands, WA, Australia
[2] Univ Western Australia, Ctr Med Res, Perth, WA 6009, Australia
[3] Univ Western Australia, Sch Engn, Dept Elect Elect & Comp Engn, Perth, WA 6009, Australia
[4] Univ Western Australia, Med Sch, Div Surg, Perth, WA 6009, Australia
[5] Univ Western Australia, Med Sch, Div Pathol & Lab Med, Perth, WA 6009, Australia
[6] Fiona Stanley Hosp, PathWest, Murdoch, WA 6150, Australia
[7] Univ Notre Dame, Sch Med, Fremantle, WA 6160, Australia
[8] Fiona Stanley Hosp, Breast Ctr, Murdoch, WA 6150, Australia
[9] Royal Perth Hosp, Breast Clin, Perth, WA 6000, Australia
[10] Univ Melbourne, Melbourne Med Sch, Dept Surg, Parkville, Vic 3010, Australia
[11] Australian Res Council Ctr Personalised Therapeut, Perth, WA 6000, Australia
来源
BIOMEDICAL OPTICS EXPRESS | 2022年 / 13卷 / 06期
基金
澳大利亚研究理事会;
关键词
QUANTITATIVE MICRO-ELASTOGRAPHY; CONVOLUTIONAL NEURAL-NETWORKS; CONSERVING SURGERY; MARGIN ASSESSMENT; INTRAOPERATIVE ASSESSMENT; DIAGNOSTIC-ACCURACY; REPEAT SURGERY; CANCER; DIFFERENTIATION; RECURRENCE;
D O I
10.1364/BOE.455110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate a convolutional neural network (CNN) for multi-class breast tissue classification as adipose tissue, benign dense tissue, or malignant tissue, using multi-channel optical coherence tomography (OCT) and attenuation images, and a novel Matthews correlation coefficient (MCC)-based loss function that correlates more strongly with performance metrics than the commonly used cross-entropy loss. We hypothesized that using multi-channel images would increase tumor detection performance compared to using OCT alone. 5,804 images from 29 patients were used to fine-tune a pre-trained ResNet-18 network. Adding attenuation images to OCT images yields statistically significant improvements in several performance metrics, including benign dense tissue sensitivity (68.0% versus 59.6%), malignant tissue positive predictive value (PPV) (79.4% versus 75.5%), and total accuracy (85.4% versus 83.3%), indicating that the additional contrast from attenuation imaging is most beneficial for distinguishing between
引用
收藏
页码:3380 / 3400
页数:21
相关论文
共 50 条
  • [31] Deep Learning Classification on Optical Coherence Tomography Retina Images
    Shih, Frank Y.
    Patel, Himanshu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (08)
  • [32] Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models
    Khemakhem R.
    Belgacem S.
    Echtioui A.
    Ghorbel M.
    Ben Hamida A.
    Kammoun I.
    SN Computer Science, 5 (5)
  • [33] Multi-Class Gastroesophageal Reflux Disease Classification System Using Deep Learning Techniques
    Chan, In Neng
    Wong, Tang
    Wong, Pak Kin
    Yan, Tao
    Chan, In Weng
    Ren, Hao
    Chan, Chon In
    2023 10TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2023, 2023, : 223 - 229
  • [34] Deep Learning Approach To Malware Multi-Class Classification Using Image Processing Techniques
    Kumari, Mamta
    Hsieh, George
    Okonkwo, Christopher A.
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 13 - 18
  • [35] Multi-Class Document Classification Using Lexical Ontology-Based Deep Learning †
    Yelmen, Ilkay
    Gunes, Ali
    Zontul, Metin
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [36] Optical coherence elastography: Strain imaging in tissue using optical coherence tomography
    Kennedy, Brendan F.
    Kennedy, Kelsey M.
    Ford, Chris
    McLaughlin, Robert A.
    Bush, Mark B.
    Sampson, David D.
    22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421
  • [37] In vivo optical coherence tomography attenuation imaging of the breast surgical cavity using a handheld probe
    Gong, Peijun
    Foo, Ken Y.
    Lakhiani, Devina D.
    Zilkens, Renate
    Ismail, Hina M.
    Yeomans, Chris
    Dessauvagie, Benjamin F.
    Latham, Bruce
    Saunders, Christobel M.
    Kennedy, Brendan F.
    OPTICS AND LASER TECHNOLOGY, 2023, 166
  • [38] Multi-class Tissue Segmentation of CT images using an Ensemble Deep Learning method
    Mahmoodian, Naghmeh
    Chakrabarty, Sumit
    Georgiades, Marilena
    Pech, Maciej
    Hoeschen, Christoph
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [39] Multi-Class Breast Cancer Classification Using Ensemble of Pretrained models and Transfer Learning
    Rao, Perumalla Murali Mallikarjuna
    Singh, Sanjay Kumar
    Khamparia, Aditya
    Bhushan, Bharat
    Podder, Prajoy
    CURRENT MEDICAL IMAGING, 2022, 18 (04) : 409 - 416
  • [40] Multi-Class Skin Lesions Classification Using Deep Features
    Usama, Muhammad
    Naeem, M. Asif
    Mirza, Farhaan
    SENSORS, 2022, 22 (21)