Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning

被引:13
|
作者
Foo, Ken Y. [1 ,2 ,3 ]
Newman, Kyle [1 ,2 ,3 ]
Fang, Qi [1 ,2 ,3 ]
Gong, Peijun [1 ,2 ,3 ]
Ismail, Hina M. [1 ,2 ,3 ]
Lakhiani, Devina D. [1 ,2 ,3 ]
Zilkens, Renate [1 ,2 ,4 ]
Dessauvagie, Benjamin F. [5 ,6 ]
Latham, Bruce [6 ,7 ]
Saunders, Christobel M. [8 ,9 ,10 ]
Chin, Lixin [1 ,2 ,3 ]
Kennedy, Brendan F. [1 ,2 ,3 ,11 ]
机构
[1] Harry Perkins Inst Med Res, QEII Med Ctr, BRITElab, Nedlands, WA, Australia
[2] Univ Western Australia, Ctr Med Res, Perth, WA 6009, Australia
[3] Univ Western Australia, Sch Engn, Dept Elect Elect & Comp Engn, Perth, WA 6009, Australia
[4] Univ Western Australia, Med Sch, Div Surg, Perth, WA 6009, Australia
[5] Univ Western Australia, Med Sch, Div Pathol & Lab Med, Perth, WA 6009, Australia
[6] Fiona Stanley Hosp, PathWest, Murdoch, WA 6150, Australia
[7] Univ Notre Dame, Sch Med, Fremantle, WA 6160, Australia
[8] Fiona Stanley Hosp, Breast Ctr, Murdoch, WA 6150, Australia
[9] Royal Perth Hosp, Breast Clin, Perth, WA 6000, Australia
[10] Univ Melbourne, Melbourne Med Sch, Dept Surg, Parkville, Vic 3010, Australia
[11] Australian Res Council Ctr Personalised Therapeut, Perth, WA 6000, Australia
来源
BIOMEDICAL OPTICS EXPRESS | 2022年 / 13卷 / 06期
基金
澳大利亚研究理事会;
关键词
QUANTITATIVE MICRO-ELASTOGRAPHY; CONVOLUTIONAL NEURAL-NETWORKS; CONSERVING SURGERY; MARGIN ASSESSMENT; INTRAOPERATIVE ASSESSMENT; DIAGNOSTIC-ACCURACY; REPEAT SURGERY; CANCER; DIFFERENTIATION; RECURRENCE;
D O I
10.1364/BOE.455110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate a convolutional neural network (CNN) for multi-class breast tissue classification as adipose tissue, benign dense tissue, or malignant tissue, using multi-channel optical coherence tomography (OCT) and attenuation images, and a novel Matthews correlation coefficient (MCC)-based loss function that correlates more strongly with performance metrics than the commonly used cross-entropy loss. We hypothesized that using multi-channel images would increase tumor detection performance compared to using OCT alone. 5,804 images from 29 patients were used to fine-tune a pre-trained ResNet-18 network. Adding attenuation images to OCT images yields statistically significant improvements in several performance metrics, including benign dense tissue sensitivity (68.0% versus 59.6%), malignant tissue positive predictive value (PPV) (79.4% versus 75.5%), and total accuracy (85.4% versus 83.3%), indicating that the additional contrast from attenuation imaging is most beneficial for distinguishing between
引用
收藏
页码:3380 / 3400
页数:21
相关论文
共 50 条
  • [41] Mapping Tissue Optical Attenuation to Identify Cancer Using Optical Coherence Tomography
    McLaughlin, Robert A.
    Scolaro, Loretta
    Robbins, Peter
    Saunders, Christobel
    Jacques, Steven L.
    Sampson, David D.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 657 - 664
  • [42] Multi-class disease detection using deep learning and human brain medical imaging
    Yousaf, Fatima
    Iqbal, Sajid
    Fatima, Nosheen
    Kousar, Tanzeela
    Rahim, Mohd Shafry Mohd
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [43] Classification of Material Type from Optical Coherence Tomography Images Using Deep Learning
    Sabuncu, Metin
    Ozdemir, Hakan
    INTERNATIONAL JOURNAL OF OPTICS, 2021, 2021
  • [44] Automated and Interpretable Glaucoma Classification Using Deep Learning and Optical Coherence Tomography Images
    Rasel, Rafiul Karim
    Wu, Fengze
    Chiariglione, Marion
    Gao, Xiaoyi Raymond
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [45] A deep learning based architecture for multi-class skin cancer classification
    Mushtaq, Snowber
    Singh, Omkar
    Multimedia Tools and Applications, 2024, 83 (39) : 87105 - 87127
  • [46] Deep Graph Learning for DDoS Detection and Multi-Class Classification IDS
    Saunders, Braden J.
    De Grande, Robson E.
    Carvalho, Glaucio H. S.
    Woungang, Isaac
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 96 - 100
  • [47] Deep learning models comparison for tissue classification using optical coherence tomography images: toward smart laser osteotomy
    Bayhaqi, Yakub A.
    Hamidi, Arsham
    Canbaz, Ferda
    Navarini, Alexander A.
    Cattin, Philippe C.
    Zam, Azhar
    OSA CONTINUUM, 2021, 4 (09): : 2510 - 2526
  • [48] Deep tissue imaging by optical coherence tomography/microscopy at Optical Window III
    Nishizawa, Norihiko
    Yamanaka, Masahito
    BIOMEDICAL IMAGING AND SENSING CONFERENCE 2021, 2021, 11925
  • [49] Motion correction in retinal optical coherence tomography imaging using deep learning registration
    Ntatsis, Konstantinos
    Brea, Luisa Sanchez
    De Jesus, Danilo Andrade
    Barbosa-Breda, Joao
    van Walsum, Theo
    Bennink, Edwin
    Klein, Stefan
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [50] MULTI-MODAL LEARNING USING PHYSICIANS DIAGNOSTICS FOR OPTICAL COHERENCE TOMOGRAPHY CLASSIFICATION
    Logan, Yash-yee
    Kokilepersaud, Kiran
    Kwon, Gukyeong
    AlRegib, Ghassan
    Wykoff, Charles
    Yu, Hannah
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,