Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning

被引:0
|
作者
Peng, Nian [1 ]
Xu, Chengli [1 ]
Shen, Yi [2 ]
Yuan, Wu [3 ]
Yang, Xiaoyu [1 ]
Qi, Changhai [4 ]
Qiu, Haixia [5 ]
Gu, Ying [1 ]
Chen, Defu [1 ]
机构
[1] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[2] Fujian Normal Univ, Fujian Prov Key Lab Photon Technol, Fuzhou 350117, Peoples R China
[3] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong 999077, Peoples R China
[4] Aerosp Cent Hosp, Dept Pathol, Beijing 100049, Peoples R China
[5] Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Laser Med, Beijing 100853, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 12期
基金
中国国家自然科学基金;
关键词
SCATTERING MEDIA; COEFFICIENTS; TISSUE; OCT;
D O I
10.1364/BOE.543606
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The optical attenuation coefficient (AC), a crucial tissue parameter indicating the rate of light attenuation within a medium, enables quantitative analysis of tissue properties and facilitates tissue differentiation. Despite its growing clinical significance, accurate quantification of AC from optical coherence tomography (OCT) signals remains a pressing concern. This study comprehensively investigates the factors influencing the accuracy of quantitative AC extraction among existing OCT-based AC extraction algorithms. Subsequently, we propose an approach, the Multi-Reference Phantom Driven Network (MR-Net), which leverages multi-reference phantoms and deep learning to implicitly model factors affecting OCT signal propagation, thereby automatically regressing AC. Using a dataset from Intralipid and silicone-TiO2 phantoms with known AC values obtained from a collimated transmission system and imaged with a 1300 nm swept-source OCT system, we conducted a thorough comparison focusing on data length, out-of-focus distance, and reference phantoms' attenuation among existing OCT-based AC extraction algorithms. By leveraging this extensive dataset, MR-Net can automatically model the complex physical effects in the transmission process of OCT signals, significantly enhancing the accuracy of AC predictions. MR-Net outperforms other algorithms in all metrics, achieving an average relative error of only 10.43% for calculating attenuation samples, significantly lower than the lowest value of 23.72% achieved by other algorithms. This method offers a quantitative framework for disease diagnosis, ultimately contributing to more accurate and effective tissue characterization in clinical settings.
引用
收藏
页码:6697 / 6714
页数:18
相关论文
共 50 条
  • [1] Robust, accurate depth-resolved attenuation characterization in optical coherence tomography
    Li, Kaiyan
    Liang, Wenxuan
    Yang, Zihan
    Liang, Yanmei
    Wan, Suiren
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (02): : 672 - 687
  • [2] Deep learning based characterization of human organoids using optical coherence tomography
    Wang, Bingjie
    Ganjee, Razieh
    Khandaker, Irona
    Flohr, Keevon
    He, Yuanhang
    Li, Guang
    Wesalo, Joshua
    Sahel, JOSe -A L. A. I. N.
    Silva, Susana da
    Pi, Shaohua
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (05): : 3112 - 3127
  • [3] Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning
    Foo, Ken Y.
    Newman, Kyle
    Fang, Qi
    Gong, Peijun
    Ismail, Hina M.
    Lakhiani, Devina D.
    Zilkens, Renate
    Dessauvagie, Benjamin F.
    Latham, Bruce
    Saunders, Christobel M.
    Chin, Lixin
    Kennedy, Brendan F.
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (06): : 3380 - 3400
  • [4] Classification of pachychoroid on optical coherence tomography using deep learning
    Nam Yeo Kang
    Ho Ra
    Kook Lee
    Jun Hyuk Lee
    Won Ki Lee
    Jiwon Baek
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259 : 1803 - 1809
  • [5] Classification of pachychoroid on optical coherence tomography using deep learning
    Kang, Nam Yeo
    Ra, Ho
    Lee, Kook
    Lee, Jun Hyuk
    Lee, Won Ki
    Baek, Jiwon
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2021, 259 (07) : 1803 - 1809
  • [6] Multi-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images
    Kurokawa, Kazuhiro
    Crowell, James A.
    Do, Nhan
    Lee, John J.
    Miller, Donald T.
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (01)
  • [7] Deep learning model DeepNeo predicts neointimal tissue characterization using optical coherence tomography
    Valentin Koch
    Olle Holmberg
    Edna Blum
    Ece Sancar
    Alp Aytekin
    Masaru Seguchi
    Erion Xhepa
    Jens Wiebe
    Salvatore Cassese
    Sebastian Kufner
    Thorsten Kessler
    Hendrik Sager
    Felix Voll
    Tobias Rheude
    Tobias Lenz
    Adnan Kastrati
    Heribert Schunkert
    Julia A. Schnabel
    Michael Joner
    Carsten Marr
    Philipp Nicol
    Communications Medicine, 5 (1):
  • [8] Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography
    Zulina, Natalia
    Caravaca, Oscar
    Liao, Guiqiu
    Gravelyn, Sara
    Schmitt, Morgane
    Badu, Keshia
    Heroin, Lucile
    Gora, Michalina J.
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (02) : 955 - 968
  • [9] Use of Optical Coherence Tomography for Accurate Characterization of Atherosclerosis
    Coletta, John
    Suzuki, Nobuaki
    Nascimento, Bruno R.
    Bezerra, Hiram G.
    Rosenthal, Noah
    Guagliumi, Giulio
    Rollins, Andrew M.
    Costa, Marco A.
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2010, 94 (02) : 268 - 272
  • [10] Plaque phenotyping using deep learning in optical coherence tomography imaging
    Yamaji, K.
    Kohjitani, H.
    Watanabe, H.
    Taniwaki, M.
    Akashi, R.
    Kubo, S.
    Ohira, H.
    Numasawa, Y.
    Arikawa, M.
    Iwama, M.
    Kitai, T.
    Kobayashi, Y.
    Tomohisa, T.
    Yamaji, Y.
    Ono, K.
    EUROPEAN HEART JOURNAL, 2024, 45