Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning

被引:0
|
作者
Peng, Nian [1 ]
Xu, Chengli [1 ]
Shen, Yi [2 ]
Yuan, Wu [3 ]
Yang, Xiaoyu [1 ]
Qi, Changhai [4 ]
Qiu, Haixia [5 ]
Gu, Ying [1 ]
Chen, Defu [1 ]
机构
[1] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[2] Fujian Normal Univ, Fujian Prov Key Lab Photon Technol, Fuzhou 350117, Peoples R China
[3] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong 999077, Peoples R China
[4] Aerosp Cent Hosp, Dept Pathol, Beijing 100049, Peoples R China
[5] Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Laser Med, Beijing 100853, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 12期
基金
中国国家自然科学基金;
关键词
SCATTERING MEDIA; COEFFICIENTS; TISSUE; OCT;
D O I
10.1364/BOE.543606
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The optical attenuation coefficient (AC), a crucial tissue parameter indicating the rate of light attenuation within a medium, enables quantitative analysis of tissue properties and facilitates tissue differentiation. Despite its growing clinical significance, accurate quantification of AC from optical coherence tomography (OCT) signals remains a pressing concern. This study comprehensively investigates the factors influencing the accuracy of quantitative AC extraction among existing OCT-based AC extraction algorithms. Subsequently, we propose an approach, the Multi-Reference Phantom Driven Network (MR-Net), which leverages multi-reference phantoms and deep learning to implicitly model factors affecting OCT signal propagation, thereby automatically regressing AC. Using a dataset from Intralipid and silicone-TiO2 phantoms with known AC values obtained from a collimated transmission system and imaged with a 1300 nm swept-source OCT system, we conducted a thorough comparison focusing on data length, out-of-focus distance, and reference phantoms' attenuation among existing OCT-based AC extraction algorithms. By leveraging this extensive dataset, MR-Net can automatically model the complex physical effects in the transmission process of OCT signals, significantly enhancing the accuracy of AC predictions. MR-Net outperforms other algorithms in all metrics, achieving an average relative error of only 10.43% for calculating attenuation samples, significantly lower than the lowest value of 23.72% achieved by other algorithms. This method offers a quantitative framework for disease diagnosis, ultimately contributing to more accurate and effective tissue characterization in clinical settings.
引用
收藏
页码:6697 / 6714
页数:18
相关论文
共 50 条
  • [31] Automated chick gender determination using optical coherence tomography and deep learning
    Saetiew, Jadsada
    Nongkhunsan, Papawit
    Saenjae, Jiraporn
    Yodsungnoen, Rapeephat
    Molee, Amonrat
    Jungthawan, Sirichok
    Fongkaew, Ittipon
    Meemon, Panomsak
    POULTRY SCIENCE, 2025, 104 (05)
  • [32] A deep learning approach to classify atherosclerosis using intracoronary optical coherence tomography
    Athanasiou, Lambros S.
    Olender, Max L.
    de la Torre Hernandez, Jose M.
    Ben-Assa, Eyal
    Edelman, Elazer R.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [33] Deep learning -based optical coherence tomography segmentation of retinal fluids and layers using multi -grader annotations
    Alemany, Sofia Pla
    Albrecht, Thomas
    Valcarcel, Alessandra
    Hibar, Derrek
    Chen, Michael H.
    Chen, Dinah
    Look, Vivian
    Chang, Vivide
    Ferrara, Daniela
    Lu, Huanxiang
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [34] Characterization of Optical Coherence Tomography Images for Colon Lesion Differentiation under Deep Learning
    Saratxaga, Cristina L.
    Bote, Jorge
    Ortega-Moran, Juan F.
    Picon, Artzai
    Terradillos, Elena
    Arbide del Rio, Nagore
    Andraka, Nagore
    Garrote, Estibaliz
    Conde, Olga M.
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [35] Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging
    van Soest, Gijs
    Goderie, Thade
    Regar, Evelyn
    Koljenovic, Senada
    van Leenders, Geert L. J. H.
    Gonzalo, Nieves
    van Noorden, Sander
    Okamura, Takayuki
    Bouma, Brett E.
    Tearney, Guillermo J.
    Oosterhuis, J. Wolter
    Serruys, Patrick W.
    van der Steen, Anton F. W.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
  • [36] Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging
    Van Soest, G.
    Goderie, T. P. M.
    Regar, E.
    Bouma, B. E.
    Tearney, G. J.
    Serruys, P. W.
    Oosterhuis, J. W.
    Van der Steen, A. F. W.
    EUROPEAN HEART JOURNAL, 2011, 32 : 401 - 401
  • [37] Mapping Tissue Optical Attenuation to Identify Cancer Using Optical Coherence Tomography
    McLaughlin, Robert A.
    Scolaro, Loretta
    Robbins, Peter
    Saunders, Christobel
    Jacques, Steven L.
    Sampson, David D.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 657 - 664
  • [38] Deep Learning Enables Accelerated Optical Coherence Tomography Angiography
    Kim, Gyuwon
    Kim, Jongbeom
    Choi, Woo June
    Kim, Chulhong
    Lee, Seungchul
    HIGH-SPEED BIOMEDICAL IMAGING AND SPECTROSCOPY VII, 2022, 11971
  • [39] Deep learning in optical coherence tomography: Sample size requirements
    Voon, Shong M.
    Hong, Sheng C.
    Cheyne, Kirsten
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2019, 47 : 104 - 104
  • [40] A deep learning based pipeline for optical coherence tomography angiography
    Liu, Xi
    Huang, Zhiyu
    Wang, Zhenzhou
    Wen, Chenyao
    Jiang, Zhe
    Yu, Zekuan
    Liu, Jingfeng
    Liu, Gangjun
    Huang, Xiaolin
    Maier, Andreas
    Ren, Qiushi
    Lu, Yanye
    JOURNAL OF BIOPHOTONICS, 2019, 12 (10)