Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks

被引:6
|
作者
Srinivasan, Seshasai [1 ]
Saghir, M. Ziad [2 ]
机构
[1] McMaster Univ, Fac Engn, Hamilton, ON L8S 4K1, Canada
[2] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON M5B 2K3, Canada
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Thermodiffusion; Liquid hydrocarbon mixtures; Artificial neural networks; THERMAL-DIFFUSION COEFFICIENTS; PRECISE DETERMINATION; MOLECULAR-DIFFUSION; ALKANE MIXTURES; SORET; 1,2,3,4-TETRAHYDRONAPHTHALENE; ISOBUTYLBENZENE; THERMOPHORESIS; UNIVERSITY; PRESSURE;
D O I
10.1007/s00521-014-1603-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A previously presented neural network-based thermodiffusion model that was valid for n-alkane type components has been extended to predict the thermo-solutal diffusion in an arbitrary binary hydrocarbon mixture. The enhanced model uses additional input information about the binary system and is based on a significantly large database of thermodiffusion data. Apart from the development and validation with respect to an extensive set of experimental data on the binary mixtures from the literature, the ability of the model to predict the known thermodiffusion trends has been demonstrated. The model can be potentially extended to multi-component mixtures and for any type of mixture, viz., polymers, molten metals, water-alcohol, colloidal mixtures etc.
引用
收藏
页码:1193 / 1203
页数:11
相关论文
共 50 条
  • [41] Predicting the Dynamic Modulus of Asphalt Mixtures Containing Recycled Asphalt Shingles using Artificial Neural Networks
    Jun, Liu
    Yan, Kezhen
    Zhao, Xiaowen
    ADVANCES OF TRANSPORTATION: INFRASTRUCTURE AND MATERIALS, VOL 1, 2016, : 3 - 10
  • [42] Predicting Viscosities of Heavy Oils and Solvent-Heavy Oil Mixtures Using Artificial Neural Networks
    Chen, Zehua
    Yang, Daoyong
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (11):
  • [43] Artificial neural networks for predicting low temperature performances of modified asphalt mixtures
    Tasdemir, Yuksel
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2009, 16 (04) : 237 - 244
  • [44] Measurement of Thermodiffusion Coefficient for Binary Hydrocarbon Fluid Mixtures in Porous Medium: Experimental and Numerical Results
    Jaber, T. J.
    Bataller, H.
    Saghir, M. Z.
    IMECE 2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 9, PTS A-C, 2010, : 461 - 469
  • [45] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Muhammet Yilmaz
    Fatih Tosunoğlu
    Nur Hüseyin Kaplan
    Fatih Üneş
    Yusuf Sinan Hanay
    Modeling Earth Systems and Environment, 2022, 8 : 5547 - 5563
  • [46] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Yilmaz, Muhammet
    Tosunoglu, Fatih
    Kaplan, Nur Huseyin
    Unes, Fatih
    Hanay, Yusuf Sinan
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 5547 - 5563
  • [47] An Analysis of Mixtures Using Amperometric Biosensors and Artificial Neural Networks
    R. Baronas
    F. Ivanauskas
    R. Maslovskis
    P. Vaitkus
    Journal of Mathematical Chemistry, 2004, 36 : 281 - 297
  • [48] Thermodynamic analyses of refrigerant mixtures using artificial neural networks
    Arcaklioglu, E
    Çavusoglu, A
    Erisen, A
    APPLIED ENERGY, 2004, 78 (02) : 219 - 230
  • [49] An analysis of mixtures using amperometric biosensors and artificial neural networks
    Baronas, R
    Ivanauskas, F
    Maslovskis, R
    Vaitkus, P
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2004, 36 (03) : 281 - 297
  • [50] Prediction of thermal conductivity of liquid and vapor refrigerants for pure and their binary, ternary mixtures using artificial neural network
    N. Ghalem
    S. Hanini
    M. W. Naceur
    M. Laidi
    A. Amrane
    Thermophysics and Aeromechanics, 2019, 26 : 561 - 579