Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks

被引:6
|
作者
Srinivasan, Seshasai [1 ]
Saghir, M. Ziad [2 ]
机构
[1] McMaster Univ, Fac Engn, Hamilton, ON L8S 4K1, Canada
[2] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON M5B 2K3, Canada
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Thermodiffusion; Liquid hydrocarbon mixtures; Artificial neural networks; THERMAL-DIFFUSION COEFFICIENTS; PRECISE DETERMINATION; MOLECULAR-DIFFUSION; ALKANE MIXTURES; SORET; 1,2,3,4-TETRAHYDRONAPHTHALENE; ISOBUTYLBENZENE; THERMOPHORESIS; UNIVERSITY; PRESSURE;
D O I
10.1007/s00521-014-1603-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A previously presented neural network-based thermodiffusion model that was valid for n-alkane type components has been extended to predict the thermo-solutal diffusion in an arbitrary binary hydrocarbon mixture. The enhanced model uses additional input information about the binary system and is based on a significantly large database of thermodiffusion data. Apart from the development and validation with respect to an extensive set of experimental data on the binary mixtures from the literature, the ability of the model to predict the known thermodiffusion trends has been demonstrated. The model can be potentially extended to multi-component mixtures and for any type of mixture, viz., polymers, molten metals, water-alcohol, colloidal mixtures etc.
引用
收藏
页码:1193 / 1203
页数:11
相关论文
共 50 条
  • [21] Surface Tension Estimation of Binary Mixtures of Organic Compounds Using Artificial Neural Networks
    Roosta, Aliakbar
    Sadeghi, Behnoosh
    CHEMICAL ENGINEERING COMMUNICATIONS, 2016, 203 (10) : 1349 - 1358
  • [22] Predicting performance of self-compacting concrete mixtures using artificial neural networks
    Nehdi, M
    El Chabib, H
    El Naggar, MH
    ACI MATERIALS JOURNAL, 2001, 98 (05) : 394 - 401
  • [23] Measurement of thermodiffusion coefficient of hydrocarbon binary mixtures under pressure with the thermogravitational technique
    Urteaga, P.
    Bou-Ali, M. M.
    Alonso de Mezquia, D.
    Santamaria, J.
    Santamaria, C.
    Madariaga, J. A.
    Bataller, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (07):
  • [24] Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures
    Ojaki, Hamed Amouei
    Lashkarbolooki, Mostafa
    Movagharnejad, Kamyar
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2023, 20 (03) : 655 - 667
  • [25] Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures
    Hamed Amouei Ojaki
    Mostafa Lashkarbolooki
    Kamyar Movagharnejad
    Journal of the Iranian Chemical Society, 2023, 20 : 655 - 667
  • [26] THERMAL DIFFUSION IN BINARY LIQUID HYDROCARBON MIXTURES
    TREVOY, DJ
    DRICKAMER, HG
    JOURNAL OF CHEMICAL PHYSICS, 1949, 17 (11): : 1120 - 1124
  • [27] A new proposed approach to estimate the thermodiffusion coefficients for linear chain hydrocarbon binary mixtures
    Abbasi, Alireza
    Saghir, M. Ziad
    Kawaji, Masahiro
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (01):
  • [28] Predicting Excess Enthalpies of Ether and/or Hydrocarbon Binary Mixtures
    Ding-Yu Peng
    George C. Benson
    Benjamin C.-Y. Lu
    Journal of Solution Chemistry, 1999, 28 : 505 - 519
  • [29] Predicting excess enthalpies of ether and/or hydrocarbon binary mixtures
    Peng, DY
    Benson, GC
    Lu, BCY
    JOURNAL OF SOLUTION CHEMISTRY, 1999, 28 (05) : 505 - 519
  • [30] Predicting grinding burn using artificial neural networks
    HONGXING LIU
    TAO CHEN
    LIANGSHENG QU
    Journal of Intelligent Manufacturing, 1997, 8 : 235 - 237