Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks

被引:6
|
作者
Srinivasan, Seshasai [1 ]
Saghir, M. Ziad [2 ]
机构
[1] McMaster Univ, Fac Engn, Hamilton, ON L8S 4K1, Canada
[2] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON M5B 2K3, Canada
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Thermodiffusion; Liquid hydrocarbon mixtures; Artificial neural networks; THERMAL-DIFFUSION COEFFICIENTS; PRECISE DETERMINATION; MOLECULAR-DIFFUSION; ALKANE MIXTURES; SORET; 1,2,3,4-TETRAHYDRONAPHTHALENE; ISOBUTYLBENZENE; THERMOPHORESIS; UNIVERSITY; PRESSURE;
D O I
10.1007/s00521-014-1603-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A previously presented neural network-based thermodiffusion model that was valid for n-alkane type components has been extended to predict the thermo-solutal diffusion in an arbitrary binary hydrocarbon mixture. The enhanced model uses additional input information about the binary system and is based on a significantly large database of thermodiffusion data. Apart from the development and validation with respect to an extensive set of experimental data on the binary mixtures from the literature, the ability of the model to predict the known thermodiffusion trends has been demonstrated. The model can be potentially extended to multi-component mixtures and for any type of mixture, viz., polymers, molten metals, water-alcohol, colloidal mixtures etc.
引用
收藏
页码:1193 / 1203
页数:11
相关论文
共 50 条
  • [31] Predicting grinding burn using artificial neural networks
    Liu, HX
    Chen, T
    Qu, LS
    JOURNAL OF INTELLIGENT MANUFACTURING, 1997, 8 (03) : 235 - 237
  • [32] Predicting important parameters using artificial neural networks
    Ramakumar, K. R.
    HYDROCARBON PROCESSING, 2008, 87 (10): : 81 - 83
  • [33] PREDICTING BOILER EMISSION BY USING ARTIFICIAL NEURAL NETWORKS
    Yusoff, A. R.
    Aziz, I. A.
    JURNAL TEKNOLOGI, 2009, 50
  • [34] Predicting surgical satisfaction using artificial neural networks
    Rughani, Anand I.
    Dumont, Travis M.
    Tranmer, Bruce I.
    JOURNAL OF NEUROSURGERY-SPINE, 2014, 20 (03) : 298 - 299
  • [35] Using Artificial Neural Networks for Predicting Temperatures in Timber
    Cachim, P.
    STRUCTURES IN FIRE: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE, 2010, : 602 - 610
  • [36] Predicting thrust of aircraft using artificial neural networks
    Dalkiran, Fatma Yildirim
    Toraman, Mustafa
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2021, 93 (01): : 35 - 41
  • [37] Predicting preterm birth using artificial neural networks
    Catley, C
    Frize, M
    Walker, RC
    Petriu, DC
    18TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2005, : 103 - 108
  • [38] Investigation of the Soret effect in binary, ternary and quaternary hydrocarbon mixtures: New expressions for thermodiffusion factors in quaternary mixtures
    Eslamian, Morteza
    Saghir, M. Ziad
    Mounir Bou-Ali, M.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (11) : 2128 - 2137
  • [39] Predicting the vapor-liquid equilibrium of hydrocarbon binary mixtures and polymer solutions using predetermined pure component parameters
    Ryu, Sang Kyu
    Bae, Young Chan
    CHEMICAL PHYSICS, 2012, 400 : 171 - 177
  • [40] The Application of Artificial Neural Networks to Identification of Some Amino Acids in Binary Mixtures
    Aravin, O., I
    Novikov, A. Yu
    Selifonova, E., I
    Chernova, R. K.
    Shevyrev, S. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (01): : 105 - 111