Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

被引:35
|
作者
Yu, Hui [1 ]
Wang, Feng
Tu, Kang
Xie, Lu
Li, Yuan-Yuan
Li, Yi-Xue
Agrawal, Sunil
机构
[1] Shanghai Ctr Bioinformat Technol, Shanghai 200235, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Technol, Shanghai 200240, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Bioinformat Ctr, Shanghai 200031, Peoples R China
关键词
D O I
10.1186/1471-2105-8-194
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results: Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion: By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data
    Kramarz, Barbara
    Huntley, Rachael P.
    Rodriguez-Lopez, Milagros
    Roncaglia, Paola
    Saverimuttu, Shirin C. C.
    Parkinson, Helen
    Bandopadhyay, Rina
    Martin, Maria-Jesus
    Orchard, Sandra
    Hooper, Nigel M.
    Brough, David
    Lovering, Ruth C.
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 75 (04) : 1417 - 1435
  • [42] Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
    Dai, MH
    Wang, PL
    Boyd, AD
    Kostov, G
    Athey, B
    Jones, EG
    Bunney, WE
    Myers, RM
    Speed, TP
    Akil, H
    Watson, SJ
    Meng, F
    NUCLEIC ACIDS RESEARCH, 2005, 33 (20) : e175.1 - e175.9
  • [43] Mining gene expression data for functional annotation of genomes
    Deshpande, Nandan
    Pandey, Akhilesh
    Trends in Biotechnology, 2002, 20 (07)
  • [44] Sipagene:: An integrative database for complex analysis and sharing of affymetrix gene expression data
    Haeupl, T.
    Menssen, A.
    Edinger, G.
    Gruen, J.
    Gruetzkau, A.
    Radbruch, A.
    Burmester, G.
    ANNALS OF THE RHEUMATIC DISEASES, 2007, 66 : 130 - 130
  • [45] RNA-SEQUENCING OF THE SUBGENUAL ANTERIOR CINGULATE CORTEX HIGHLIGHTS TRANSCRIPT-LEVEL EXPRESSION DIFFERENCES BETWEEN MAJOR PSYCHIATRIC DISORDERS
    Akula, Nirmala
    Kramer, Robin
    Xu, Qing
    Johnson, Kory
    Marenco, Stefano
    Auluck, Pavan
    Apud, Jose
    Rhodes, Harker
    Harris, Brent
    Lipska, Barbara K.
    McMahon, Francis J.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : 1305 - 1305
  • [46] Principal component analysis-based filtering improves detection for Affymetrix gene expression arrays
    Lu, Jun
    Kerns, Robnet T.
    Peddada, Shyamal D.
    Bushel, Pierre R.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (13) : e86
  • [47] The weibull distribution based normalization method for affymetrix gene expression microarray data
    Autio, Reija
    Kilpinen, Sami
    Saarela, Matti
    Hautaniemi, Sampsa
    Kallioniemi, Olli
    Astola, Jaakko
    2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 9 - +
  • [48] Transcript-Level In Silico Analysis of Alzheimer's Disease-Related Gene Biomarkers and Their Evaluation with Bioactive Flavonoids to Explore Therapeutic Interactions
    Azmi, Muhammad Bilal
    Ahmed, Affan
    Ahmed, Tehniat Faraz
    Imtiaz, Fauzia
    Asif, Uzma
    Zaman, Uzma
    Khan, Khalid Ali
    Sherwani, Asif Khan
    ACS OMEGA, 2023, 8 (43): : 40695 - 40712
  • [49] MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays
    Turro, Ernest
    Lewin, Alex
    Rose, Anna
    Dallman, Margaret J.
    Richardson, Sylvia
    NUCLEIC ACIDS RESEARCH, 2010, 38 (01) : e4 - e4
  • [50] Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3′ expression arrays
    Pradervand, Sylvain
    Paillusson, Alexandra
    Thomas, Jerome
    Weber, Johann
    Wirapati, Pratyaksha
    Hagenbuechle, Otto
    Harshman, Keith
    BIOTECHNIQUES, 2008, 44 (06) : 759 - 762