The weibull distribution based normalization method for affymetrix gene expression microarray data

被引:1
|
作者
Autio, Reija [1 ]
Kilpinen, Sami [2 ,3 ,4 ]
Saarela, Matti [1 ]
Hautaniemi, Sampsa [1 ]
Kallioniemi, Olli [2 ]
Astola, Jaakko [1 ]
机构
[1] Tampere Univ Technol, Inst Signal Proc, FIN-33101 Tampere, Finland
[2] Univ Turku, VTT Tech Res Ctr Finland, SF-20500 Turku, Finland
[3] Univ Helsinki, Biomedicum Biochip Ctr, FIN-00014 Helsinki, Finland
[4] Univ Helsinki, Inst Biomed, FIN-00014 Helsinki, Finland
关键词
D O I
10.1109/GENSIPS.2006.353130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Affymetrix human gene expression microarrays are widely used in gene expression analysis. However, the comparability of data analyzed in different laboratories is not self-evident hindering integration of multiple data sets. In this study, we introduce a novel normalization method, Weibull distribution based normalization that makes the data from different laboratories easier to integrate and compare. The method normalizes the samples by correcting the ML-estimates of the parameters of Weibull distribution to be the same in every sample of the same array generation. The effects of the Weibull distribution based normalization were studied by comparing the distributions of the samples, examining the deviations of expression levels of housekeeping genes, and clustering the data.
引用
收藏
页码:9 / +
页数:2
相关论文
共 50 条
  • [1] Normalization strategy of microarray gene expression data
    伍亚舟
    张玲
    黄明辉
    杨梦苏
    易东
    Journal of Medical Colleges of PLA, 2007, (04) : 195 - 200
  • [2] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Ohtaki, Megu
    Otani, Keiko
    Hiyama, Keiko
    Kamei, Naomi
    Satoh, Kenichi
    Hiyama, Eiso
    BMC BIOINFORMATICS, 2010, 11
  • [3] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Megu Ohtaki
    Keiko Otani
    Keiko Hiyama
    Naomi Kamei
    Kenichi Satoh
    Eiso Hiyama
    BMC Bioinformatics, 11
  • [4] Variance stabilization and robust normalization for microarray gene expression data
    von Heydebreck, A
    Huber, W
    Poustka, A
    Vingron, M
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 623 - 628
  • [5] A robust approach based on Weibull distribution for clustering gene expression data
    Wang, Huakun
    Wang, Zhenzhen
    Li, Xia
    Gong, Binsheng
    Feng, Lixin
    Zhou, Ying
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
  • [6] A robust approach based on Weibull distribution for clustering gene expression data
    Huakun Wang
    Zhenzhen Wang
    Xia Li
    Binsheng Gong
    Lixin Feng
    Ying Zhou
    Algorithms for Molecular Biology, 6
  • [7] Oligonucleotide microarray data distribution and normalization
    Sidorov, IA
    Hosack, DA
    Gee, D
    Yang, J
    Cam, MC
    Lempicki, RA
    Dimitrov, DS
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 1219 - 1222
  • [8] Oligonucleotide microarray data distribution and normalization
    Sidorov, IA
    Hosack, DA
    Gee, D
    Yang, J
    Cam, MC
    Lempicki, RA
    Dimitrov, DS
    INFORMATION SCIENCES, 2002, 146 (1-4) : 67 - 73
  • [9] Iterative rank-order normalization of gene expression microarray data
    Eric A Welsh
    Steven A Eschrich
    Anders E Berglund
    David A Fenstermacher
    BMC Bioinformatics, 14
  • [10] Iterative rank-order normalization of gene expression microarray data
    Welsh, Eric A.
    Eschrich, Steven A.
    Berglund, Anders E.
    Fenstermacher, David A.
    BMC BIOINFORMATICS, 2013, 14