The weibull distribution based normalization method for affymetrix gene expression microarray data

被引:1
|
作者
Autio, Reija [1 ]
Kilpinen, Sami [2 ,3 ,4 ]
Saarela, Matti [1 ]
Hautaniemi, Sampsa [1 ]
Kallioniemi, Olli [2 ]
Astola, Jaakko [1 ]
机构
[1] Tampere Univ Technol, Inst Signal Proc, FIN-33101 Tampere, Finland
[2] Univ Turku, VTT Tech Res Ctr Finland, SF-20500 Turku, Finland
[3] Univ Helsinki, Biomedicum Biochip Ctr, FIN-00014 Helsinki, Finland
[4] Univ Helsinki, Inst Biomed, FIN-00014 Helsinki, Finland
来源
2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS | 2006年
关键词
D O I
10.1109/GENSIPS.2006.353130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Affymetrix human gene expression microarrays are widely used in gene expression analysis. However, the comparability of data analyzed in different laboratories is not self-evident hindering integration of multiple data sets. In this study, we introduce a novel normalization method, Weibull distribution based normalization that makes the data from different laboratories easier to integrate and compare. The method normalizes the samples by correcting the ML-estimates of the parameters of Weibull distribution to be the same in every sample of the same array generation. The effects of the Weibull distribution based normalization were studied by comparing the distributions of the samples, examining the deviations of expression levels of housekeeping genes, and clustering the data.
引用
收藏
页码:9 / +
页数:2
相关论文
共 50 条
  • [41] Quality of feature selection based on microarray gene expression data
    Maciejewski, Henryk
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 3, 2008, 5103 : 140 - 147
  • [42] Microarray gene expression: A study of between-platform association of Affymetrix and cDNA arrays
    Sarmah, Chintanu Kumar
    Samarasinghe, Sandhya
    COMPUTERS IN BIOLOGY AND MEDICINE, 2011, 41 (10) : 980 - 986
  • [43] Engine Failure Data Analysis Method Based on Weibull Distribution Model
    Gu Yingkui
    Li Jing
    MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION IV, PTS 1 AND 2, 2012, 128-129 : 850 - 854
  • [44] Gene Expression Network Reconstruction by LEP Method Using Microarray Data
    You, Na
    Mou, Peng
    Qiu, Ting
    Kou, Qiang
    Zhu, Huaijin
    Chen, Yuexi
    Wang, Xueqin
    SCIENTIFIC WORLD JOURNAL, 2012,
  • [45] Triclustering Discovery Using the δ-Trimax Method on Microarray Gene Expression Data
    Siswantining, Titin
    Saputra, Noval
    Sarwinda, Devvi
    Al-Ash, Herley Shaori
    SYMMETRY-BASEL, 2021, 13 (03):
  • [46] A modified harmony search method for biclustering microarray gene expression data
    Balamurugan, R.
    Natarajan, A. M.
    Premalatha, K.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 16 (04) : 269 - 289
  • [47] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [48] Visualization of microarray gene expression data
    Prasad, Tangirala Venkateswara
    Ahson, Syed Ismail
    BIOINFORMATION, 2006, 1 (04) : 141 - 145
  • [49] Analyzing microarray gene expression data
    Lewin, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 876 - 877
  • [50] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108